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Motivation / setting the scene

LHC measurements rely on detailed modelling of jets.

Jet 1

Jet 2

Jet 3

Jet 4

UE

▶ Multijet production cross sections must
be accurate
⇒ Need fixed-order accurate jet rates
⇒ Correct shower w/ fixed-order.
But “jetty” LHC measurements are often
far beyond the validity of the shower.

▶ Microscopic jet structure must be precise
…if we want to use jet substructure for
precision measurements.
⇒ Need fully differential understanding
of all-order uncertainties.

▶ The transition should be smooth & with
well-defined perturbative uncertainty.

For LHC experiments to accept new, improved showers, these need
to be as good (or better) in describing hard well-separated jets.
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Accurate description of background regions
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Most tails necessary for searches/indirect
measurements cannot be reached by an
ordered PS – phase space too small!
PS reasoning in the tails potentially in-
troduces large uncertainties from

▶ scale setting
▶ missing non-QCD evolution

…at LHC, scale setting tends to be a relevant issue.

Large non-shower region ↔ large transition region …where missing
higher-order uncertainties mix with technical-parameter uncertainties :(

⇒ While current needs in searches are met by (NLO) merging schemes,
develop unified method for both precision measurements + searches.
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Back to the basics

Let’s look at the rate of the 1st emission from parton pair ab:

fa(xa, t(τ ′)) fb(xb, t(τ ′))
∫ τ ′

τ

dτ̄

τ̄

∫ 1−ε

xi

dζ

ζ[
|M2(Φa

2)|2JaΠa(xa, ta(τ̄), t(τ ′)) Πb(xb, ta(τ̄), t(τ ′))αs(ta)
2π

Pa′a(za(ζ)) fa′ (xa/za, ta)
fa(xa, ta)

+

|M2(Φb
2)|2JbΠa(xa, tb(τ̄), t(τ ′)) Πb(xb, tb(τ̄), t(τ ′))αs(tb)

2π
Pb′b(zb(ζ)) fb′ (xb/zb, tb)

fb(xb, tb)

]
Now we can perform the shift

Pi′i(zi) → Pi′i(zi)
|M3(Φ3)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)
⇒ |M2(Φa

2)|2Pa′a(za) + |M2(Φb
2)|2Pb′b(zb) = |M3(Φ3)|2

Rate of 1st emission ∝ |M3|2; needs physical intermediate states.
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PS basics, read backwards

Now let’s look at it as if we had precalculated |M3(Φ3)|2

fa(xa, t(τ ′)) fb(xb, t(τ ′))
∫ τ ′

τ

dτ̄

τ̄

∫ 1−ε

xi

dζ

ζ

|M3(Φ3)|2
[
JaΠa(xa, ta(τ̄), t(τ ′)) Πb(xb, ta(τ̄), t(τ ′))αs(ta)

2π

fa′ (xa/za, ta)
fa(xa, ta)

Pa′a(za(ζ))|M2(Φa
2)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)
+

JbΠa(xa, tb(τ̄), t(τ ′)) Πb(xb, tb(τ̄), t(τ ′))αs(tb)
2π

fb′ (xb/zb, tb)
fb(xb, tb)

Pb′b(zb(ζ))|M2(Φb
2)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)

]
⇒ Defines reweighting of x-section that recovers shower exactly.
⇒ Two histories contribute & need to be “mixed” in proportion.
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Histories

⇒ Correct PS weight for an external phase-space point Φ3 that
was distributed according to |M3(Φ3)|2:

1. Calculate ta, tb, za, zb and the probabilities
Pa = Pa′a(za(ζ))|M2(Φa

2)|2 and Pb = Pb′b(zb(ζ))|M2(Φb
2)|2

The evaluation of |M2|2 requires an explicit construction of
Φ2 with a clustering procedure that is an exact inverse of the
shower splitting procedure.

2. Pick the “path” i with probability Pi
Pa+Pb

3. Calculate the factors

Πa(xa, ti, t′) Πb(xb, ti, t′) αs

2π

fi′ (xi/zi, ti)
fi(xi, ti)

and multiply to the event weight.
Knowlegde of Φ2 allows using the PS to calculate Π(x, ti, t′)
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Limitations of the shower picture

Limitation 1
P have to be positive, which is not the case for sophisticated showers.
⇒ Fix: Pick according to |Pi|

|Pa|+|Pb| & apply weight Pi
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Pa+Pb
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Limitation 2
Procedure only valid in the “PS
shower phase space”, i.e. regions ful-
filling ordering constraints.
Improved (not removed) by larger
phase-space coverage, e.g. from EW
corrections, “inclusive clustering”

bla

⇒ Limitation 2 particularly important.
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Shower-friendly merging procedures

With this in mind, let’s say we want
To not introduce new technical parameters
So that shower improvements in transition regions are not swamped by
algorithmic uncertainties.
To describe emission with LO accuracy over complete phase space.
To have a fixed baseline accuracy (from which to improve) everywhere.
To treat events with no scale hierachies systematically.
So that their combination with the shower is straight-forward and smooth.

Of course,
we should never deteriorate the shower accuracy.
shower improvements should naturally be incorporated.

Plain old ME corrections, provided “non-shower” events are
treated carefully (benefit: PS cut-off only parameter)

Unitarized MEPS; handling of “non-shower” evts not clear to me
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Matrix element corrections for the first emission

approximation 1 approximation 2 ful l  matr ix element

Sum up two paths, get full result, e.g. replacing the PS splitting
kernels through

Pi′i(zi) → Pi′i(zi)
|M3(Φ3)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)
⇒ |M2(Φa

2)|2Pa′a(za) + |M2(Φb
2)|2Pb′b(zb) = |M3(Φ3)|2
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The spectre of ordering I

Showers require an ordering criterion to recover
known anomalous dimensions given “standard”
radiation functions.

Showers require sensible starting/evolution con-
ditions to recover (the arguments of) known
logarithmic enhancements.

⇒ Can never fill complete phase space for an
arbitrary (but fixed) multiplicity starting from an
arbitrary (but fixed) lowest-multiplicity state.

However, the missing phase space can be filled by
showering other non-shower states!
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The spectre of ordering II

Successive ME corrections allow merging w/o a transition region
…but need to remember the mixing of shower & non-shower paths!
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MECs for ordered parton showers

To describe jet rates in PS (ordered) phase space with LO accuracy, we
need to knowing all ordered/unordered paths. Within this phase space,
the Matrix-element corrections for Ordered Parton Showers (MOPS) are

P i
n(Φ n+1/Φ n) → P i

n(Φ n+1/Φ n) ⊗ Rn(Φ n+1)
where

R3 =
M3∑

k

P k
3

∑
j

Θ
t

j
2>tk

3
Rj

2 P j
2

∑
i

Θ
ti

1>t
j
2

Ri
1 P i

1 Θti
fac>ti

1
Mi

0

=
M3∑

k

P k
3

∑
j

Θ
t

j
2>tk

3

Mk
2∑

j

P
j
2

∑
i

Θ
ti

1>t
j
2

Mj
1∑

i

P i
1 Θ

ti
fac>ti

1
Mi

0
P i

1 Θ
ti

fac>ti
1

Mi
0

P j
2

∑
i

. . .

(shown for three emissions, general formula in paper)
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Adding complementary states

The MOPS shower now needs to be complemented with the missing
non-shower states, i.e. states that cannot be reached by any ordered
sequence of shower splittings from an underlying state.

These cross sections can still be regularized by the PS cut-off – nothing
else needed – and then precalculated & showered.

The treatment of non-shower contributions is crucial. We should have a
sensible way to assess the perturbative uncertainty in these pieces!

⇒ Need an automatic, general and PS-friendly way to define scales for
these configurations.
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PS basics, read as scale setting I

LO ME corrections ensure that the PS recovers the
coupling-stripped LO MEs. Remembering the emission rate

fa(xa, t) fb(xb, t)
∫

dτ̄

τ̄

∫
dζ

ζ
|M3(Φ3)|2 wa

αs(ta)
2π

Pa′a(za(ζ))|M2(Φa
2)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)

+ wb
αs(tb)

2π

Pb′b(zb(ζ))|M2(Φb
2)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)

]

and ignoring the all-order weights wi, we see that the part i = a, b

Pi′i(zi(ζ))|M2(Φi
2)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)
contributes with coupling αs(ti)

to the rate. The same result would be obtained by an “effective
scale” choice

αs(teff) =
αs(ta) Pa′a(za(ζ))|M2(Φa

2)|2 + αs(tb) Pb′b(zb(ζ))|M2(Φb
2)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)
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PS basics, read as scale setting II

The effective scale defined by

αs(teff) = αs(ta) Pa′a(za(ζ))|M2(Φa
2)|2 + αs(tb) Pb′b(zb(ζ))|M2(Φb

2)|2

|M2(Φa
2)|2Pa′a(za) + |M2(Φb

2)|2Pb′b(zb)

has several good properties:
a) teff ∼ ta if Pa′a ≫ Pb′b and similarly teff ∼ tb if Pb′b ≫ Pa′a, and

smooth interpolation between the extremes
b) Incorporates all the dynamics of the splitting and all the dynamics

of the underlying Ms
c) For no dominant “path”, we find teff ∼ weighted average of ti

⇒ Sensible process-independent scale-setting mechanism: Let the
dynamics of Ms dictates the scale value.
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Scale setting with matrix elements

Generalize to non-shower states: To assign (renormalization & PS
starting) scales for non-PS states, we

⋄ Require scale that captures maximal amount of dynamics.
⋄ We directly let the ME dictate the preferred scale values:

αn+1
s (teff

n+1) =

∑
i

αs(ti
n+1) P i

n+1 αn
s (teff i

n ) Mi
n∑

i
P i

n+1 Mi
n

αs(t eff
B+n) relies on all αs(t eff

B+i<n). P i
n+1 are shower radiation

functions, to smoothly map onto QCD evolution. t eff can be
extracted numerically by zero-finding.
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What is “non-shower” anyway?

Before we have a “physically” sensible calculation, note that
a) showered non-shower states overlap with non-shower states.
b) non-shower states can contain large scale hierarchies.

⇒ Need to remove overlap & introduce sensible suppression.
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Removing overlaps between shower and non-shower states

a) showered non-shower states overlap with non-shower states.

Usually classified with “above or below merging scale”.
⇒ Cannot do this w/o introducing transition region!

Thus, define “non-shower” by effective scale and shower action:
+0 particle states showered from tfac

+1 particle non-shower states defined by “all t1,i > tfac”
and showered from probabilistically chosen t1 ∈ {t1,i}

+2 particle non-shower states defined by “all t2,i > t1,i”
and showered from calculated t2,eff

+n particle non-shower states defined by “no ordered paths
&& no ordered emission sequence tk,eff > tk+1 > · · · > tn

&& no ordered sequence tn−1,eff > tn if Sn−1 is non-shower”
and showered from probabilistically chosen tn ∈ {tn,i} if tn−1,eff > tn

and from tn,eff otherwise
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The spectre of ordering III

b) non-shower states can contain large scale hierarchies.

We can now classify “hierachical events” by
tfac ≫ tk,eff
tk,eff ≫ tn

which will induce Sudakovs ∆0(tfac, tk,eff) and/or ∆k(tk,eff, tn)
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MOPS in a nutshell

⋄ Parton-shower splittings are successively corrected to the LO
⋄ matrix element for up to n emissions
⋄ …need to know unordered contributions to an ordered sequence; matrix
⋄ element C++ code from e.g. MG5
⋄ Non-shower corrections are defined as “not reachable by any
⋄ shower sequence”
⋄ Non-shower phase-space points precalculated (MG5+MadEvent)

Non-shower corrections require
⋄ Definition of sensible, generalizable “effective scale”
⋄ directly use full dynamics of LO matrix elements; maps smoothly onto scale
⋄ setting in matrix element-corrected shower.
⋄ Overlap removal & suppress residual hierachies by employing teff
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What are the parameters? How do you vary?

The method contains the usual shower uncertainties:
⋄ Parton-shower cut-off, scales in the shower
⋄ Non-perturbative event generator modelling

…just like in any other (ME+) shower prediction.

Only other uncertainty of the method: teff value, i.e. the
fixed-order scale uncertainty of non-shower states.
⇒ Perturbative + perturbatively improvable.
⇒ Vary teff like any other perturbative parameter.
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Vincia MOPS validation at LEP
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VINCIA predictions for jet resolution
measures ym m+1 (Durham) for lepton
collisions. ME corrections are applied
for ≤ 3 emissions. The red band is
obtained by varying the effective scale
t eff [GeV] in non-shower events by
factors of two.

⋄ MOPS approaches regular shower at
small ym m+1.
⋄ Overall moderate, roughly constant
effect from non-shower states.
⋄ t eff well-determined, thus uncertainty
small.
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Vincia MOPS validation at LHC
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VINCIA predictions for jet resolution
measures dm m+1 (longitudinally in-
variant k⊥ jet algorithm with R = 0.4)
for hadron collisions. ME corrections
are applied for ≤ 3 emissions. The
red band is obtained by varying the
effective scale t eff [GeV] in non-shower
events by factors of two.

⋄ MOPS approaches regular shower at
small dm m+1.
⋄ Effect from non-shower states signif-
icant.
⋄ t eff less well-determined, thus uncer-
tainty larger.
⋄ t eff uncertainty at small dm m+1
from competition of large αs and Su-
dakov suppression.
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Vincia MOPS data comparisons at LHC
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VINCIA 2.2 and VINCIA 2.0.01 predictions compared to ATLAS and CMS data. ME
corrections are applied for ≤ 3 emissions. The red band is obtained by varying the
effective scale in non-shower events by factors of two.

⇒ t eff relatively well-determined - observables dominated by shower states.
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Vincia MOPS data comparisons at LHC
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VINCIA 2.2 and VINCIA 2.0.01 predictions compared to ATLAS and CMS data.
Predictions are rescaled to the experimental inclusive one-jet cross section. ME
corrections are applied for ≤ 3 emissions. The red band is obtained by varying the
effective scale in non-shower events by factors of two.

⇒ t eff uncertainty large - observables dominated by non-shower states.
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Extending ME corrections to higher orders?

To extend the method to NLO, we need to
. . . include NLO clusterings in the construction of histories
. . . revise the definition of non-shower to include NLO paths
. . . have access to virtual MEs within the PS

. . . use NLO calculations in non-shower regions
Although this is a lot of work, it does not seem impossible if we
have a sensible NLO shower.

Somewhat less satisfactory would be to rescale the zero-jet sample
with B0/B0 and all non-shower rates with Bn/Bn k-factors

26 / 28



Summary

⋄ QCD calculations should describe soft/collinear partons,
well-separated partons & anything in-between.

⋄ Any calculation in the perturbative region should be assessed
with well-defined perturbative (scale) uncertainties.

⋄ We shouldn’t deteriorate the PS upon including well-separated
partons, and e.g. shun artificial “transistion regions”.
ME corrections for ordered PS are a useful blueprint.
Allows to naturally supplement non-shower states w/o
introducing technical parameters or “boolean” scale choices.
Hopefully realistic uncertainties due to pert. scale defintion.
One main ingredient is the definition of an “effective scale”
based directly on perturbative information from LO MEs.

⇒ Results at LO are quite encouraging.
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…

Thanks for your time!
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Backup: Matrix element corrections and color

We can use the full ME as splitting probability, but only bookkeep
leading-color states.
We can distribute the full ME over leading-color configurations according
to

|Mn|2 = CMG
ii |J (i)

n |2 → CMG
ii |J (i)

n |2
∑

j,k CMG
jk J (j)

n J (k)∗
n∑

j CMG
jj |J (j)

n |2

where J (i)
n are the entries in the color matrix supplied by MG5.

Thus, the matrix element for each colour structure gets a correction from
the subleading colour part of the full matrix element that is proportional
to the relative weight of that colour structure.
The sum over all colour flows reproduces the full colour-summed matrix
element norm squared.
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Backup: ME corrections and negative kernels

Note: MEC can again flip sign!

Use two step weighted Sudakov algorithm. Use weighted algorithm for
accepting t, retain highest of all t, then use weighted algorithm again to
accept state change according to MEC(P ).

Histories: Choose with MEC(|P |), retain analytical correction weight
MEC(P )/MEC(|P |)

Effective scale: Use full P , but ensure to have reasonably large scale
range to allow solving for effective scale with Newton solver.
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Backup: ME corrections and enhancements or variations

ME corrections do not act on αs values or their variations. Just make
sure to retain all weights.

Same for enhancements: Make sure not to remove analytic correction
factor for first weighed algorithm in the second weighting!
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