Dark photon interpretations in CMS

DMWG Meeting June 21st, 2018

Andreas Albert

Overview

Generally: What is a good benchmark?

- Easy to use by analysts, recasters
- Allows to compare all relevant searches
 - Mass:
 - << M_Z
 - M<≈M_Z
 - M > M_Z
 - Production:
 - DY,
 - Higgs,
 - radiation
 - Lifetime:
 - Prompt
 - displaced

This talk: CMS-specific

- What interpretation material is provided?
- How useful is the provided information?
- Examples: Recasts of existing searches

22/06/18

CMS-PAS-HIG-16-035

$h \rightarrow ZD ZD + X \rightarrow 4\mu + X$

 10^{-2}

0.025 GeV)

10^{_4}>

10^{-6L1}

¦ (0.025 10

CMS-PAS-HIG-16-035

Model-specific limits

Topology dependence? Not obvious for recasting

22/06/18

CMS-PAS-HIG-16-035

$h \rightarrow ZD \; ZD + X \rightarrow 4\mu + X$

Also provide model independent limits

reported value for the ratio also includes its variation over all of the benchmark points. This model independent limit on $\sigma(pp \rightarrow 2a + X) \times B^2(a \rightarrow 2\mu) \times \alpha_{gen}$ is 1.7 fb and it is constant in the entire m_a range, as a consequence of having a constant $\epsilon_{full}/\alpha_{gen}$ for each signal mass.

High-mass dilepton

- Bump hunt in di-electron/muon mass spectrum
- XS*BR limits as a function of mediator mass for different widths
- Resonance mass range between 200 GeV to > 5 TeV

36.3 fb⁻¹ (13 TeV)

2000

m(μ⁺μ⁻) [GeV]

1000

tī, tW, WW, WZ, ZZ, ττ

CMS

Data

Jets

 $\gamma^*/Z \rightarrow \mu^+\mu^-$

Events $\ge m(\mu^+\mu^-)$ 10⁸ 10⁷ 10⁶ 10⁵ 10⁴ 10³ 10³

10⁵

 10^{3}

10² 10

10

Submitted to JHEP

arxiv:1803.06292

Recasting dilepton in minimal dark photon model

Recasting dilepton in minimal dark photon model

22/06/18

Monojet

- Search for DM in jet+MET events
- Interpretation in DMWG simplified models

• Good:

- DMWG vector mediator ≈ dark photon
- Practical hurdles:
 - Couplings non-uniformly different: g_q , g_l independent and not charge dependent
 - \rightarrow Different BR(Mediator \rightarrow SM)
 - Large BR(Mediator → DM)

22/06/18

A. Albert - Dark Photon CMS

a A

ecceccecce

Recasting monojet

Way around: Use provided coupling limits

Method:

- 1) Calculate DMSimp XS for (Mmed, gq) generate p p > y1
- Calculate Dark photon XS for Mmed generate p p > zd
- 3) Find ε for which dark photon XS = DMSimp XS

22/06/18

A. Albert - Dark Photon CMS BR(inv) $\approx 1!$

Summary

- Dark photon interpretations are case-by-case \rightarrow no unified strategy
- Reinterpretation can work, but needs the right material
- Examples:
 - Higgs \rightarrow dark photons
 - Signal model not very general \rightarrow Direct recast hard
 - But: model independent limits
 - High mass dilepton, monojet:
 - Recast based on XS limits or DMSimp \rightarrow relatively easy
 - Dependance on BR(inv)!
 - Agnostic as to what model should be used, but we love UFO's!
- More dedicated analysis in the pipeline \rightarrow Let's be prepared!

22/06/18