Calculating the relic density for a light vector mediator with MadDM and MicrOMEGAs Thanks to Geneviève Bélanger, Bryan Zaldivar, Andreas Goudelis, Antonio Boveia and Caterina Doglioni

Isabelle John

June 20, 2018

- 1 General information
- 2 Relic density with MadDM

Couplings to DM and quarks Couplings to DM and quarks and leptons

- 3 Relic density with MicrOMEGAs Comparison of the results of MadDM and MicrOMEGAs
- 4 Smaller couplings and MicrOMEGAs in freeze-in scenario Freeze-in: scanning over DM and SM couplings

General information

Aim:

• investigation of relic density for a vector mediator Z' for light particle masses and small SM couplings

General settings:

- vector mediator
- Dirac DM
- g_{DM} = 1
- $m_{\text{med}} = 3 \cdot m_{\text{DM}}$
- couplings to SM from 0.0001 to 0.1
- mediator mass from 10 GeV to 300 GeV in steps of 1 GeV
- freeze-out scenario

Relic density and contour line

Standard Model couplings only to quarks (g_q) :

Relic density

Contour for $\Omega h^2 = 0.12$

 \Rightarrow agrees with CMS plot

Couplings to DM, and quarks and leptons

3 scenarios for lepton couplings (g_l) :

- equal couplings: $g_q = g_l$
- lepton couplings smaller than quark couplings: $g_q = 10g_l$
- quark couplings smaller than lepton couplings: $g_q = 0.1g_l$

inspired from:

- Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels, Albert et al. arXiv:1703.05703 (V1, V2 benchmarks)
- email conversation with M. Williams (LHCb)

Relic density with couplings to DM and quarks and leptons, with and without neutrinos

- significant change between small and large lepton couplings (relative to quark couplings)
- impact of neutrinos visible but small

1 General information

- 2 Relic density with MadDM Couplings to DM and quarks Couplings to DM and quarks and leptons
- 3 Relic density with MicrOMEGAs Comparison of the results of MadDM and MicrOMEGAs
- 4 Smaller couplings and MicrOMEGAs in freeze-in scenario Freeze-in: scanning over DM and SM couplings

Comparison of MadDM and MicrOMEGAs

- same input as with MadDM
- generation of one set of data takes ≈ 15 minutes (several hours in MadDM)

Comparison for case with only quark couplings:

- similar results for MadDM and MicrOMEGAs
- some divergence at low mediator masses (< 20 GeV)

m _{med}	MadDM	MicrOMEGAs
300 GeV	5.657281e-02	5.58489682e-02
200 GeV	2.643482e-02	2.56617172e-02
100 GeV	7.322865e-03	6.94493222e-03
50 GeV	2.160695e-03	1.93027573e-03
10 GeV	4.517275e-04	1.97988878e-04

Relic density for $g_q = 1.99 \cdot 10^{-2}$

1 General information

- 2 Relic density with MadDM Couplings to DM and quarks Couplings to DM and quarks and leptons
- 3 Relic density with MicrOMEGAs Comparison of the results of MadDM and MicrOMEGAs
- 4 Smaller couplings and MicrOMEGAs in freeze-in scenario Freeze-in: scanning over DM and SM couplings

Investigating smaller couplings

- MicrOMEGAs offers freeze-in option
- freeze-in for this mass range requires very small couplings, otherwise relic density too large due to not enough DM annihilation because of small annihilation cross section

Different scan approach:

- fix mediator mass and DM mass to scan over SM and DM couplings to find the combination giving the relic density $\Omega h^2 = 0.12$:
 - 1. on-shell:
 - $m_{\rm med}=10~{
 m GeV},~m_{
 m DM}=3.3~{
 m GeV}$
 - 2. off-shell:
 - $m_{\rm med} = 3.3 \text{ GeV}$, $m_{\rm DM} = 10 \text{ GeV}$

Freeze-in relic density

Relic density for on-shell mediator

Relic density for off-shell mediator

• very small couplings required to obtain $\Omega h^2 = 0.12$

Summary and conclusion

- 1. calculated relic density for light ($<50~{\rm GeV})$ mediator and small (<0.01) couplings
 - reproduced CMS curve with MadDM
 - estimated impact of lepton couplings
 - tested MicrOMEGAs vs MadDM obtaining the same results
- 2. calculated freeze-in relic density for same model ($m_{\rm med} = 10$ GeV)
 - DM and SM couplings have to be very small ($\lesssim 10^{-11})$ to give correct relic density
- 3. added case for off-shell mediator and calculated relic density
 - DM and SM have to be small $(\approx 10^{-6})$ to give correct relic density

Backup slides

MicrOMEGAs: Relic density and contour plots (freeze-out)

Left: Summary of all contour lines. Right: Focused in on the $g_q = 0.1g_l$ contour line from left plot (due to ROOT plotting issue).

Investigating smaller couplings

- freeze-out with MadDM and MicrOMEGAs, freeze-in with MicrOMEGAs
- freeze-in possible for $g_{\text{DM}} \cdot g_{\text{SM}} pprox 10^{-11}$
- 3 scenarios:
 - 1. $g_{\text{DM}} = 1$, varying g_{SM}
 - 2. $g_{\rm DM} = g_{\rm SM}$
 - 3. $g_{DM} = 10g_{SM}$
- g_{SM} contains both quark and lepton couplings (equal)

Smaller couplings with MadDM I

For scenario (1):

- extends previous plots to much smaller
- couplings

Ω

- breaks for a few values (blue rectangular area)
- relic density very large
- below $g_q = 10^{-7}$: relic density values only change a bit for each mass
- above $g_{\rm q} = 10^{-8}$: relic density ~ 10

Relic density summary table

	MadDM	MicrOMEGAs	
		freeze-out	freeze-in
$g_{ m DM}=1,~g_{ m SM}=10^{-4}-10^{-7}$	$10^{0}-10^{5}$	$10^{0}-10^{6}$	breaks
$g_{ m DM}=1,~g_{ m SM}=10^{-8}-10^{-11}$	$10^{5}-10^{6}$	breaks	$6\cdot 10^{21}$
$g_{ m DM} = g_{ m SM} = 10^{-4} - 10^{-7}$	breaks	$10^{3}-10^{6}$	$10^8 - 10^{14}$
0 11			
$g_{\rm DM} = g_{\rm SM} = 10^{-8} - 10^{-11}$	breaks	breaks	_
$g_{\text{DM}} = g_{\text{SM}} = 10^{-8} - 10^{-11}$ $g_{\text{DM}} = 10g_{\text{SM}}, g_{\text{SM}} = 10^{-4} - 10^{-7}$	breaks breaks	breaks $10^2 - 10^6$	

Order of magnitude of the relic density $(\Omega \hbar^2)$ for the mediator mass range 10-50 GeV.

\Rightarrow DM overproduced everywhere

DM annihilation cross sections

Using equation (3.3) in arXiv:1703.05703 to calculate the DM annihilation cross section:

coupling constants	$\sigma v \; [{ m GeV}^{-2}]$
$g_{\rm DM} = 1, g_{\rm SM} = 10^{-5}$	$5.58569416405 \cdot 10^{-13}$
$g_{\rm DM} = g_{\rm SM} = 10^{-5}$	$5.59528938474 \cdot 10^{-23}$
$g_{\rm DM} = 10 g_{\rm SM} = 10 \cdot 10^{-5}$	$5.59528938474 \cdot 10^{-21}$

DM annihilation cross sections (s-channel) for $m_{med} = 10$ GeV.

 \Rightarrow small DM annihilation cross sections as explanation for large relic density

Freeze-in: Scanning over g_{SM} and g_{DM}

• scan over different values for DM and SM to find the combination giving the relic density $\Omega h^2 = 0.12$

4 scenarios:

- on-shell:
 - $m_{\rm med} = 10~{
 m GeV},~m_{\rm DM} = 3.3~{
 m GeV}$
 - $m_{\rm med}=1~{
 m GeV},~m_{\rm DM}=0.33~{
 m GeV}$
- off-shell:
 - $m_{\rm med} = 3.3 \ {
 m GeV}, \ m_{\rm DM} = 10 \ {
 m GeV}$
 - $m_{\rm med} = 0.33~{
 m GeV},~m_{\rm DM} = 1~{
 m GeV}$

On-shell: $m_{med} = 10$ GeV, $m_{DM} = 3.3$ GeV

• very small couplings required to obtain $\Omega h^2 = 0.12$

On-shell: $m_{med} = 1$ GeV, $m_{DM} = 0.33$ GeV

- similar to the 10 GeV case
- $g_{\rm SM}$ a bit smaller and $g_{\rm DM}$ a bit larger for $\Omega h^2 = 0.12$

Off-shell: $m_{\text{med}} = 3.3 \text{ GeV}$, $m_{\text{DM}} = 10 \text{ GeV}$

• couplings larger compared to on-shell case

Off-shell: $m_{\text{med}} = 0.33 \text{ GeV}$, $m_{\text{DM}} = 1 \text{ GeV}$

almost identical with 10 GeV case