High speed CMOS photon detectors and cameras

Mark Downing, Paola Amico, Martin Brinkmann, Mark Casali, Ralf Conzelmann, Christoph Geimer, Enrico Marchetti, Ignacio Molina-Conde, Leander Mehrgan, Javier Reyes, Matthias Seidel, Joerg Stegmeier, Mirko Todorovic

European Southern Observatory ESO (http://www.eso.org)
Outline

• Adaptive Optics Wavefront Sensing
• Camera Program
• CCD220
• LVSM CMOS Imager
• Visible Camera Design
• Summary
Adaptive Optics (AO)
- removing the twinkle of the stars

Wavefronts from astronomical objects are distorted by the Earth’s atmosphere, reducing the spatial resolution of large telescopes to that of a 10 cm telescope.

1. Wavefront Sensor measures deviation of wavefront from a flat (undistorted) wave
2. Control System computes commands for the deformable mirror(s)
3. Deformable mirror compensates the distorted wavefront, achieving diffraction-limited resolution

26 Jun 2018
Cutting-edge Adaptive Optics Facility Sees First Light

Spectacular improvement in the sharpness of MUSE images

IC 4406 -> Retina Nebula

planetary nebula NGC 6563

Some instruments also contain WFS detectors.
While the Telescope is large, the volume for cameras are modest.
Outline

• Adaptive Optics Wavefront Sensing
• Camera Program
• CCD220
• LVSM CMOS Imager
• Visible Camera Design
• Summary
Three WFS Cameras under development

All share requirements of high speed (700-1000fps), low noise/dark current, high QE, large 24µm pixel

1) Extremely low noise (0.1e-) small format (240x240) → CCD220

2) Large format (>800x800) modest noise (3e-) → LVSM

3) Low noise (1e-) small format (320x256) → SAPHIRA

Visible

NIR
Outline

• Adaptive Optics Wavefront Sensing
• Camera Program
• CCD220
• LVSM CMOS Imager
• Visible Camera Design
• Summary
Existing Teledyne-e2v CCD220-DD

Store Area

Image Area

240x120 24 µm pixels

OP 1

Gain Registers

OP 2

Gain Registers

OP 3

OP 4

Gain Registers

OP 5

OP 6

OP 7

OP 8

Store Area

Image Area

240x120 24 µm pixels

e2v CCD220:

→ Tried and proved
→ 240x240 24 µm pixels
→ 8 L3Vision Electron Multiplication outputs
→ < 0.1 e- RoN at > 1,000 fps
→ Integral Peltier package to cool to -40ºC
Outline

- Adaptive Optics Wavefront Sensing
- Camera Program
- CCD220
- LVSM CMOS Imager
- Visible Camera Design
- Summary
Large Visible AO WFS Detector needed to sample the spot elongation

Sodium Laser Guide Stars
- Frame rate \(\approx 1\, \text{kframe/sec}\) → require bright “guide stars”
- With natural guide stars only 1% of the sky is accessible
- Sodium layer at 80-90 km altitude can be stimulated by Laser to produce artificial guide stars anywhere on the sky

\[T \sim 10\text{km} \]
\[H \sim 80\text{km} \]

Distance from launch site

Predicted spot elongation pattern
• Would like **80x80** sub-apertures of **25x25** pixels to fully sample the spot elongation → 2kx2k pixels,

• CCD220 not scalable → CMOS Imager however,

• to ensure devices available on-time for first light instruments, **80x80** sub-apertures of **10x10** pixels → 800x800 pixel Large Visible Sensor Module, LVSM, being developed as first step

• Studies underway to develops techniques of how to handle truncation of spot elongation or use pixels more efficiently
LVSM
Custom Development by Teledyne-e2v

CMOS Imager with Highly integrated readout

- 800x800 continuous array of 24µm pixels
- 700fps at < 3e- read noise
- Backside illuminate for high QE: > 90% at 589nm
- All analog processing on-chip:
 - correlated double sampling (CDS),
 - programmable gain of x1/2/4/8 settable on the fly,
 - 9/10 bit single slope ADCs,
 - for total effective 12 bit data conversion
- 4 rows top + bottom processed in parallel to slow the read out per pixel and beat down the noise
 - 14µs/row = 12µs to sample the analog + 2µs ADC
- 24 line at 256Mbit/sec LVDS serial interface to outside world
 - simple easy digital interface to FPGA
Photodiode Design

• No white spots - uniform intrapixel response – high QE – good PSF – low image lag

• Photodiode - double-N implant:
 1. a large square implant to guarantee uniform response and good PSF
 2. a tapered finger implant, that provides a potential gradient towards the TG, to improve image lag

• At least 50% area of reflective metal to give high QE in the “red”

• Back-illuminated, high resistivity silicon >1000 ohm-cm, multi-2 AR Coating

• 12 µm thick:
 – best trade between PSF and QE → validated in a previous prototype
Highly Parallelized Readout

- At top and bottom, in the shadow of each pixel column, is a single row of four readout channels (each 4µm wide) for total of (4x840) 3360 channels across the device.
 - Clean/simple layout with good separation and no capacitive cross-coupling between analog and digital signals
 - Good synchronicity and low latency within a 10x10 pixel sub-aperture (< 2% of exposure time)

Read out direction compatible for both Shack Hartmann and pyramid WFS
Video Chain – single slope ADC

26 Jun 2018 EIROforum CIS
LVSM package - developed with ease of use in mind

- LVSM comes in a integral Peltier package to cool to < -10ºC
- Flat metal base with holes for firmly bolting to heat exchanger
- Kovar body filled with low thermal conductive Krypton gas
- Temperature sensor mounted on chip ceramic carrier
- IPGA array for electrical connections
- Mating socket soldered to flex circuit
LVSM Required Performance

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel full well Q_{FW}</td>
<td>$> 4000 \text{e}^-$</td>
</tr>
<tr>
<td>Linearity to full well</td>
<td>$< 5%$</td>
</tr>
<tr>
<td>Read noise including ADC</td>
<td>$< 3.0 \text{e}^{-}\text{RMS}$</td>
</tr>
<tr>
<td>Image lag</td>
<td>$< 2%$</td>
</tr>
<tr>
<td>Dark Current</td>
<td>$< 5 \text{e}^{-}/\text{pixel/s} ; < \text{read noise at 1fps}$</td>
</tr>
<tr>
<td>QE</td>
<td>$> 90%$ at 589nm; optimized for LGS Sodium Laser → BackSide Illumination (BSI)</td>
</tr>
<tr>
<td>Point Spread Function</td>
<td>$< 0.8 \text{pixel FWHM}$</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>$< 0.1%$ bad pixels</td>
</tr>
</tbody>
</table>
Outline

• Adaptive Optics Wavefront Sensing
• Camera Program
• CCD220
• LVSM CMOS Imager
• Visible Camera Design
• Summary
Heritage: AONGC - 20 deployed in VLT SPHERE, AO Facility (MUSE & HAWK-I), and ERIS

New camera design to:
- support new detector: LVSM
- add ELT interfaces - 10GbE for data and control and 1GbE for Precision Time Protocol, PTP
- solve obsolescence – AONGC design > 10 years old
- build on previous experience and take on board lessons learnt
Two visible cameras
→ single camera design

- Approach is a single camera design with customisable front-ends to support the different type of detectors:
 - CCD220-DD for optical Truth/High Order NGS/Telescope Guiding: 1,000fps, ultra low noise (< 1e-), 240x240 of 24μm pixels
 - LVSM CMOS imager for Shack-Hartmann LGS/Telescope WFS: 700fps, low noise (3e-), 800x800 of 24μm pixels
- Depending on the Detector installed, the camera will have a specific name:
 - CCD220-DD → ALICE (smALl vIsible CamEra)
 - LVSM → LISA (Large vISble cAmera)
- Cameras will be fully integrated with minimal external support equipment
 - only an external 24VDC supply
Camera size ~ 98x183x266 mm³

- Externals of cameras are identical except the opening of the optical window
- Front Plate – reference for all alignment of optics and mechanics
- Housing sealed to stop ingress of dust and moisture (condensation).
- Water Cooled → conductive cooling → housing external surface < 1.5ºC
Cameras are built around a Common Backbone
Power Board designed for high efficiency using Switch-Mode Power Supplies

- COTS components are used wherever possible and practical
 - saves substantial development effort and validation time
Low Noise of Power Board fully validated on previous generation of camera

- Detector temperature cooled and stabilized to high stability of ±10mK
- No structure or appreciable increase in the very low noise of AONGC

Proto Power Board

Noise Map

- 40 degC
1.5 A .. 2.5 A

26 Jun 2018
EIROforum CIS
Main Board based on COTS FPGA Module

Xilinx Zynq UltraScale+

Controls the read out of the Detector and handles all external communication:

• 10GbE optical fibre links to the NGC control computer and RTC (UDP)
• 1GbE optical fibre link of the Precision Time Protocol (the ELT time reference standard) for synchronizing, scheduling, and time stamping frames.
Customisable FE for Detector specific support

ALICE
- Common Cooling Rail
- Thermal and EMI Shield Cover
- Left FE Board
- Mount and Heat Exchanger
- CCD220-DD

LISA
- Mount and Heat Exchanger
- Left FE Board
- Thermal and EMI Shield Cover
- LVSM
- Right FE Board
Summary

- ESO has a very active Detector and Camera technology development program to meet current and future needs of wave-front sensing
- The new CMOS Imager, LVSM, has passed its FDR milestone and is in manufacture with first Electrical Grade devices available later this year for camera testing
- Cameras are at an advanced stage of design, and, manufacturing of the first revision is under way with integration and test of the first cameras scheduled later this year
- High confidence of success from using all lesson’s learnt from previous developments and prototypes.
- The development phase of the cameras is expected to take another 18 months followed by out sourcing of production to have cameras available in time for ELT Telescope and Instrument AIV
Future CMOS Imager

• Larger
 – LVSM at 700fps – 2k x 2k
 – SAPHIRA – 512x512

• Handle Pulsed Laser:
 – Shutter opens for 2-3us
 – Requires 7T pixel where charge is stored inside the pixel
7T pixel

- Pinned Photodiode
- Transfer Gates (Pixel Level CCD)
- Sense Node
- Source Follower
- Frame Sample
- Read
- Reset
- Enable
- Laser Pulse
- Photogenerated charge from LP number x
- Number of laser pulses per frame
- Sense node capacitance

Gates T1 – T3 are clocked

Pixel provides
- Charge Domain Accumulation
- Correlated Double Sampling readout (offset and kTC noise corrected)
- Voltage amplification
- Snapshot shutter functionality

\[V_{\text{out}} = \frac{C_1}{C_2} \cdot V_{LP} \]

\[V_{LP} = \frac{Q_{LP_1} + Q_{LP_2} + \ldots + Q_{LP_n}}{C_{SN}} \]
END
Pulsed laser: track spot on CCD

Spot contained in much smaller number of pixels and only these need to be read out.

and move charge back and forth to collect photons from several pulses before reading out.