

SPSC meeting 7. June 2018

ZIL **COMPASS Status Report** 7 June 2018 Jan Friedrich Jan Friedrich, TU Munich

Outline

- **1. Hadron structure and excited states**
 - Light quark spectroscopy news on resonance parameters
 - ChPT test: chiral anomaly

2. Nucleon structure with muon beam

- Longitudinal / transverse spin structure functions
- Proposal for transversely polarised deuteron run in 2021
- Multiplicities
- 3. DVCS and DVMP
 - Exclusive ω and GPDs (2012 pilot run)
 - DVCS analysis progress for 2016+2017
- 4. Drell-Yan
 - First polarised Drell-Yan experiment 2015
 - Status of 2018 run
- 5. First test results for proton radius measurement
- 6. New hardware and technology
- 7. Lol fixed target experiment at SPS M2 line beyond 2020
- 8. Summary

skipped parts: X(3872)-like state, Lambda production, part of azimuthal asymmetries etc.....(cf. Annual Report)

COMPASS QCD facility at CERN (SPS)

COmmon Muon Proton Apparatus for Structure and Spectroscopy

~240 physicists, 12 countries + CERN, 24 institutions

Jan Friedrich

COMPASS Spectrometer at SPS M2 beam line (CERN)

- Versatile apparatus to investigate QCD: Two-stage COMPASS Spectrometer
- Muon, electron and hadron beams with momenta 20-250 GeV and intensities up to 10⁸ particles per second
- 2. Solid-state polarised (NH₃ or ⁶LiD), liquid hydrogen and nuclear targets
- 3. Powerful tracking (350 planes) and PID systems (Muon Walls, Calorimeters, RICH)

COMPASS QCD facility at SPS M2 beam line (CERN) secondary hadron and lepton beams

COMPASS

Jan Friedrich

Physics with hadron beams: meson spectroscopy **COMPASS** main results

PHYSICAL REVIEW D 95, 032004 (2017) Resonance production and $\pi\pi$ S-wave in $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$ at 190 GeV/c

published in 2017: PRD 59 pages

2008-2009 data taking, 190 GeV/c hadron beam on a hydrogen target

 3π data sample ~50 million events 10x to 100x previous experiments allows for fine binning in masses and momentum transfer

partial-wave analysis in 3π -mass slices, detailed understanding of the 2π -isobars

Physics with hadron beams: meson spectroscopy compass main results

Light isovector resonances in $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c

Physics with hadron beams: meson spectroscopy **COMPASS** main results

Light isovector resonances in $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c

resonance parameters with unprecedented precision and systematic investigations: 6 a-like and 5 π -like states

broad spin-exotic $\pi_1(1600)$

further investigations of the $a_1(1420)$ found by COMPASS: triangle amplitude consistent with Breit-Wigner

Jan Friedrich

Measurement of chiral dynamics in reactions $\pi^{-} \gamma^{(*)} \rightarrow \pi^{-} (n\pi)$

Primakoff data samples:

π-nucleus scattering at lowest momentum transfers \rightarrow πγ reactions π-π⁰ final state: low-energy part dominated by the chiral anomaly

Analysis progress: background subtraction ($\pi^{-} \pi^{0} \pi^{0}$) fit to theory (M. Hoferichter *et al*, 2012) under investigation: luminosity determination

(SI)DIS longitudinal I – Final results

double-spin asymmetry $A_1^{\ d}$ and longitudinal spin structure function $g_1^{\ d}$ all-deuteron data <u>PLB 769 (2017) 034</u>. Together with the results on the proton spin structure function $g_1^{\ p}$, these results constitute the COMPASS legacy on the measurements of the g_1 structure function.

all-deuteron data $\Delta g/g$ final result EPJC (2017) 209

Most recent: Longitudinal double-spin asymmetry A_1^p and spin-dependent structure function g_1^p of the proton at small values of x and Q^2 , Phys. Lett. B 781 (2018) 464

SIDIS transverse & longitudinal

We continue to scrutinize polarised SIDIS data by studying various target-spin-dependent azimuthal asymmetries.

The general expression for polarised SIDIS crosssection contains 6 LO and 6 sub-leading asymmetries

LO LSA/TSA	twist-2: $PDF \otimes FF$
$A_{UL}^{\sin(2\phi_h)}$	$h_{1L}^{\perp q} \otimes H_{1q}^{\perp h}$
A_{LL}	$g^q_{1L} \otimes D^h_{1q}$
$A_{UT}^{\sin(\phi_h - \phi_S)}$	$f_{1T}^{\perp q}\otimes D_{1q}^{h}$
$A_{UT}^{\sin(\phi_h + \phi_S - \pi)}$	$h_1^q \otimes H_{1q}^{\perp h}$
$A_{UT}^{\sin(3\phi_h-\phi_S)}$	$h_{1T}^{\perp q}\otimes H_{1q}^{\perp h}$
$A_{LT}^{\cos(\phi_h - \phi_S)}$	$g^q_{1T} \otimes D^h_{1q}$

SIDIS longitudinal compass longitudinal target-spin-dependent asymmetries (LSA)

final results for the longitudinally polarised proton target (2007 and 2011 Runs).

error bars: statistical uncertainties systematic uncertainties indicated by colour bands

compared to the similar studies presented by HERMES and CLAS, our results are characterised by an unprecedented precision, covering a much wider kinematic range

$$\begin{split} A_{Siv}^{(p_T^h/zM)}(x,z) \ \ = \ \ & 2 \frac{\sum_q e_q^2 f_{1T}^{\perp\,(1)\,q}(x) \cdot D_1^q(z)}{\sum_q e_q^2 f_1^q(x) \cdot D_1^q(z)}, \end{split}$$

<u>Work in progress:</u> analogous analysis for weight P_T/M Important: large statistics, good acceptance. Allows to extract first moment of Sivers

$$f_{1T}^{\perp(1)}(x,Q^2) = \int d^2k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T,Q^2).$$

Proposal for 2021: transverse-deuteron run

. ب 0. بج projected 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 10^{-2} 10⁻¹ x_B¹ gain in h, precision $h_1^{d_v}$ $h_1^{u_v}$

For a precise determination of the Collins functions for u and d, COMPASS is currently lacking an adequate data set with transversely polarised deuteron target.

recently recommended by SPSC for approval

 10^{-2}

 10^{-1}

х

 10^{-1}

 10^{-2}

х

COMPASS

SIDIS (kaon) multiplicities

Charged kaon multiplicities (2006 160 GeV ⁶LiD) – published in <u>PLB 767 (2017) 133</u> The 3-dimensional data set (*x*, *y* and *z*) \rightarrow important input for NLO pQCD analyses of the world data in terms of FFs.

Jan Friedrich

results on the kaon multiplicity ratio K⁻/K⁺, at high z, 0.75 < z < 1: our data go far beyond the LO upper boundary value of $(u+d)/(\bar{u}+\bar{d})$ calculated at x=0.03 using <u>MSTW08L</u> as well as beyond the actual predictions of the ratio using Lund model or LO <u>DSS</u> fit. Recent finding: dependence on M_X

Deeply Virtual Compton Scattering – analysis progress for 2016/17 data

0.6

0.4

0.4

0.2

2012 pilot run: μ^+/μ^- data taken with different intensities by a factor of about 2.5; luminosity determination became only reliable on the level of 10%

 measurement in 2016/17 with equalized intensity

 F_2 and $\mu^+\!/\mu^{\scriptscriptstyle 2}$ comparison 2016: close to a few %

u+ data

Acceptance un

Acceptance µ

Q2 [Gev2]

u-data

and analysi

Jan Friedrich

7 June 2018

Generalised Parton Distributions – analysis of 2012 data

average transverse extension of partons in the proton probed by DVCS (subm. PRL):

$$\sqrt{\langle r_{\perp}^2 \rangle} = (0.58 \pm 0.04_{\text{stat}} + 0.01_{\text{sys}}) \text{ fm.}$$

SDME via exclusive ω production:

7 June 2018

Jan Friedrich

Deeply Virtual Compton Scattering – achieved statistics in 2012 and 2016/17

2016 - 130 days - mainly 2 spills of 4.8 s every 36 s						
	$I_{\rm proton}$ on T6	I_{μ} on IonCH	Nb of spills	DAQ	Veto	Nb of collected muons
	per spill	per spill		life time	life time	
μ^+	$100 \cdot 10^{11}$	$7.6\cdot 10^7$	135527	0.93	0.95	$10.0 \cdot 10^{12}$
	$70 \cdot 10^{11}$	$5.3 \cdot 10^7$	18592			
μ^{-}	$100 \cdot 10^{11}$	$6.3 \cdot 10^{7}$	143848	0.94	0.95	$9.2 \cdot 10^{12}$
	$70 \cdot 10^{11}$	$4.4\cdot 10^7$	28255			
		2017 - 130 da	ays - mainly 2	spills of 4.8	s every 36	8
	I _{proton} on T6	I_{μ} on IonCH	Nb of spills	DAQ	Veto	Nb of collected muons
	per spill	per spill		life time	life time	
μ^+	$150 \cdot 10^{11}$	$12.5\cdot 10^7$	168000	0.91	0.93	$17.8 \cdot 10^{12}$
μ^{-}	$150 \cdot 10^{11}$	$10.5 \cdot 10^7$	195000	0.91	0.93	$17.3 \cdot 10^{12}$
		2012 - 3	0 days - 1 spill	of 9.6 s ev	ery 48 s	
	$I_{\rm proton}$ on T6	I_{μ} on IonCH	Nb of spills	DAQ	Veto	Nb of used muons
	per spill	per spill		life time	life time	
μ^+	$250 \cdot 10^{11}$	$50. \cdot 10^{7}$		0.84	0.73	$1.87 \cdot 10^{12}$
μ^{-}	$250 \cdot 10^{11}$	$17.5\cdot 10^7$		0.94	0.89	$2.33 \cdot 10^{12}$

Assuming data quality in 2016/17 with 80% "good spills", we collected in 2016/17 about a factor of 10 more statistics compared to 2012

COMPASS

9 periods are collected (~2 weeks long each, polarisation is inverted after first week)

Good machine performance: on average 84% Good spectrometer availability: ~80%

COMPASS Drell-Yan Run 2015 results

PRL 119, 112002 (2017)

PHYSICAL REVIEW LETTERS

week ending

First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process

2018 Drell-Yan Run

One of the main goals of the polarised Drell-Yan program at COMPASS is the unambiguous verification of the Sivers asymmetry sign change. Improvements with respect to 2015 data taking:

- 1. Beam telescope (additional SciFi station, 11 planes vs 8 in 2015)
- 2. CEDARS: fast MAPMT and new read out chain high rate capable system
- 3. Polarised Target new field rotation procedure + extensive commissioning period
- 4. Better tuned trigger system
- 5. New radiation protection (additional wrt 2015)

Data Taking for physics was started May 17th, in spite of 6 weeks long delay on commissioning because of the cooling water tower refurbishment.

Unfortunately no beam since Wednesday May 30th for NA (SPS – NA extraction line Problem)

Polarised Target performance in 2018

- 1. After long and dense commissioning period first polarisation is achieved on April 24th
- 2. After 40 hours of polarisation (May 8th) : -82.7 % (up), +81.3 % (down)
- 3. New field rotation procedure < 0.10 % loss compared to 0.50% in 2015

Polarization after 26h in 2015 and 2018

	Upstream Cell	Downstream Cell
Positive	+ 75.3 %	+73.2 %
Polarization	+ 75.0 %	+ 78.2 %
Negative	- 73.5 %	-72.2 %
Polarization	- 80.3 %	-79.4 %

Relaxation time with beam in 2015 and 2018

	Upstream Cell	Downstream Cell
Positive	~ 1200 h	~ 1000 h
Polarization	~ 1500 h	~ 1500 h
Negative	~ 900 h	~ 700 h
Polarization	~ 1300 h	~ 1100 h

Express-Analysis 2018

Rates of dimuons with M>2.5 GeV (normalized to the trigger rates)

Rates of dimuons in target (normalized to the trigger rates)

J/psi	abso	lute	rate
-------	------	------	------

	283427	2015	283427 / 2015
LAS-LAST	1210±60	1270±50	0.95±0.07
OLAST	640±40	780±40	0.82±0.07
MLAST	130±20	140±20	0.93±0.21
TOTAL	1980±80	2190±70	0.90±0.05
			07

Test in 2018 for proton radius measurement with COMPASS

Form factor measurement in high-E muon-proton elastic scattering $10^{-3}...10^{-2}$ GeV²/c²

TPC for measuring proton recoils down to 0.5 MeV: Gatchina / GSI silicon microstrip detectors for muon scattering angle measurement: COMPASS

Jan Friedrich

COMPASS

RICH detector upgrade

Upgrade with novel photon detectors: Micromegas + thick GEM hybrid 95% of active surface electrically fully stable, 80% single-photon eff.

Computing power and future DAQ

"Mapping proton quark structure using petabytes of COMPASS data" at

BLUE WATERS

- Blue Waters: supercomputer in Urbana-Champaign, Illinois, USA. 22,500 nodes with each 32 CPUs = 720,000 CPUs

- Allocation over 9 million node hours for COMPASS data production (real and MC)

- 1 year of COMPASS data in ~ 5 days wall time
- **Pilot MC mass production**: >12 billion events for Drell-Yan (DY, J/Psi, Psi', OC), purpose e.g multi-dimensional acceptance correction
- **2-dimensional efficiency maps** of all of the 200 COMPASS tracking layers

Developments of future data acquisition systems

- COMPASS has pioneered many new developments regarding fast (deadtime free) readout schemes, e.g. APV
- recent upgrade: transition from DAQ
 PC farm to FPGA-based acquisition
- future developments: towards triggerless frontend and readout electronics (e.g. for proton radius)

M2 Fixed Target Experiment Beyond 2020

Writing of a new Lol for a Meson-Baryon experiment at SPS M2 line is ongoing and kept open for new people/ideas. We intend to circulate this Lol within the coming weeks.

6	1	EXe	cutive S	ummary	4	37	
7	2	Introduction					
8	3	Had	ron Phy	rsics with Standard Muon Beams	6	39	
9		3.1	Proton	radius measurement using $\mu - p$ elastic scattering	6	40	
10			3.1.1	Experiments targeting the proton radius puzzle: the M2 beamline case	6	41	5 2
11			3.1.2	Elastic lepton-proton scattering	8	42	5.5
12			3.1.3	Measurement at CERN M2 beamline	9	43	
13		3.2	Ex clus	ive reactions with muon beams and transversely polarized target	10	*	
14			3.2.1	Motivations for the GPD E measurement	10	**	
15			3.2.2	Measurements of Deeply Virtual Compton Scattering	11	17	
16			3.2.3	Measurements of Deeply Virtual Meson Production	13	48	
17	4	Had	ron Phy	vsics with Standard Hadron Beams	15	40	5.4
18		4.1	DY an	d charmonium production with conventional hadron beams	15	50	
19			4.1.1	Introduction: Meson Structure and the Origin of Nuclear Mass	15	51	
20			4.1.2	Valence and sea separation in the pion	16	52	
21			4.1.3	J/w production mechanism and the pion gluon distribution	19	53	5.5
22			4.1.4	Nuclear Dependence Studies: Flavour-dependent valence quark	21	54	
23			4.1.5	Drell-Yan and J/ψ angular distributions	22		
24			4.1.6	Run plan: physics goals and required beam time	22	55 6	Inst
25		4.2	Spectro	pscopy with Low-Energy Antiprotons	25	55	6.1
25			4.2.1	Physics Case	25	57	
27			4.2.2	Beam Line	27	58	
28			4.2.3	Measurements	29	50	
29			4.2.4	Experimental Requirements	29	60	
30		4.3	Measu	rement of antimatter production cross sections for Dark Matter Search	31	60	60
31			4.3.1	Physics Case	31	62	0.2
32			4.3.2	Feasibility of the measurement at COMPASS	33		
33			4.3.3	Competition and Complementarity	38	65	
34	5	Had	ron Phy	vsics with RF-Separated Beams	40	66	
35		5.1	Beam	-	40	67	

5.2	Spectro	oscopy of Kaons	41
	5.2.1	Physics Case	41
	5.2.2	Previous Measurements	43
	5.2.3	Novel Analysis Techniques	43
	5.2.4	Future Measurements at COMPASS	44
	5.2.5	Planed or Proposed Measurements at other Facilities	44
5.3	Drell-	Yan physics with high intensity kaon and antiproton beams	45
	5.3.1	Nucleon spin structure with antiproton beam	45
	5.3.2	Kaon valence distribution	47
	5.3.3	Kaon valence-sea separation	48
	5.3.4	The J/ ψ production mechanism and the gluon distribution in the kaon $\ ,\ \ldots$,	49
	5.3.5	Comparison with experimental efforts elsewhere	50
	5.3.6	Run Plan: physics goals and required beam time	51
5.4	Study	of gluon distribution in kaon via prompt photon production	51
	5.4.1	Gluon PDFs for mesons	51
	5.4.2	Prompt photons	51
	5.4.3	Prompt photon production at COMPASS	52
5.5	Primal	coff Reactions	54
	5.5.1	Kaon polarizability	54
Inst	rument	ation	57
6.1	Genera	ıl upgrades	57
	6.1.1	Front-end Electronics and DAQ	58
	6.1.2	Large-area PixelGEM detectors	58
	6.1.3	Large-area multi-pattern gaseous detectors (MPGD)	59
	6.1.4	CEDARs at high rates	59
	6.1.5	Hadron PID perspectives: RICH	59
6.2	Specifi	c upgrades	60
	6.2.1	Overview	60
	6.2.2	High-pressure hydrogen TPC for proton-radius measurement	61
	6.2.3	Recoil detector with polarized target	64
	6.2.4	Target spectrometer for spectroscopy with low-E antiprotons	66
	6.2.5	Active absorber for Drell-Yan with RF-separated hadron beams $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \hfill \hfill \ldots \hfill \hfil$	66

Mini-Workshop half-day on

*** **June 20**th *** 2pm

CERN bdg. **774** Vidyo available

for discussing the physics covered by the Lol

save the date!

7 June 2018

Summary table for PBC QCD conveners

COMPASS

3 Summary table

The main features and hardware upgrades for each Long Term Program are summarized in Tab. 1.

		Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Physics	Energy	Intensity	Rate	Туре	Target	start time,	Additions
	Goals	[GeV]	[s ⁻¹]	[kHz]			duration	
μ_p	Precision							active TPC,
elastic	proton	100	4 · 106	100	μ^{\pm}	high-pr.	2022	SciFi trigger,
scattering	radius meas.					H2	1 year	silicon veto
Hard						*		recoil silicon,
exclusive	GPD E	160	107	10	μ^{\pm}	NH ₃	2022	modified
reactions							2 years	PT magnet
		20.450	5 405				2022	
Input for	production	20-150	5.105	25	P	LH 2	2022	LH2
DM	cross-section					LHe	1 month	target
= induced	Hoone quark	12 20	5 107	25	_	1.112	2022	target spectr.:
p -iliuuceu	neavy quark	12, 20	5.10	23	P	LHZ	2022	uacking,
spectroscopy	exoues						2 years	catorimetry
Drell-Van	Pion PDFs	100	7,107	25	T [±]	C/W	2022	
Dien-Tan	110111213	190	/ 10	2.5	~	0.0	1-2 years	
							1 2 jeus	
								"active
Drell-Yan	Kaon PDFs	~100	10 ⁸	25-50	K^{\pm} , \overline{D}	NH [†]	2026	absorber".
(RF)	Nucleon TMDs				, p	C/W	2-3 years	vertex det.
(/							n/e	
Primakoff	Kaon	~100	5 · 10 ⁶	> 10	<u>K</u> -	Ni	2026	
	polarizability						1 year	
							n/e	
Prompt	Meson gluon	100	5 · 10 ⁶	10-100	K [±]	LH2,	2026	hodoscope
Photons	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High Precision	50-100	5 · 106	25	<u>K</u> -	LH2	2026	recoil TOF,
Spectroscopy	Strange Meson						1 year	forward
	Spectrum							PID

Table 1: Requirements for the future programs at the M2 beam line after 2021. Standard muon beams are in blue, standard hadron beams in green, and RF-separated hadron beams in red.

Summary

- COMPASS
- COMPASS 2018 polarised Drell-Yan run commissioning fast and efficient, we are taking physics data since May 17th
- Light-quark hadron spectroscopy "legacy paper" on resonance parameters accepted by PRD, further analysis ongoing
- Good progress on the SIDIS data analysis: longitudinal, transverse/TMD and multiplicities (FF)
- Good progress on DVCS and HEMP analysis for 2012 and 2016/17 data
- Plans beyond 2020: transverse deuteron run in 2021, LoI for future collaboration

Thank you!

SPARES

Central production II

Central production, 2008 and 2009 data. $t_1 t_2$ bins, D-wave. Interestingly, the $f_2(1270)$ signal in the D wave shows a very similar behaviour, which puts strong doubts on the common belief that the $f_2(1270)$ is produced copiously in double-Pomeron processes.

CERN

 P_h

h

SIDIS transverse&longitudinal I

We continue to scrutinize polarised SIDIS data by studying various target spin-dependent azimuthal asymmetries. General expression for SIDIS cross-section in terms of asym.:

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}(p_T^h)^2\,\mathrm{d}\phi_h\,\mathrm{d}\psi} &= 2\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right) \\ &\times \left\{1+\sqrt{2\varepsilon\left(1+\varepsilon\right)}A_{UU}^{\cos\phi_h}\cos\phi_h+\varepsilon A_{UU}^{\cos(2\phi_h)}\cos\left(2\phi_h\right)+\lambda\sqrt{2\varepsilon\left(1-\varepsilon\right)}A_{LU}^{\sin\phi_h}\sin\phi_h \\ &+S_L\left[\sqrt{2\varepsilon\left(1+\varepsilon\right)}A_{UL}^{\sin\phi_h}\sin\phi_h+\varepsilon A_{UL}^{\sin(2\phi_h)}\sin\left(2\phi_h\right)\right] \\ &+S_L\lambda\left[\sqrt{1-\varepsilon^2}A_{LL}+\sqrt{2\varepsilon\left(1-\varepsilon\right)}A_{LL}^{\cos\phi_h}\cos\phi_h\right] \\ &+S_T\left[A_{UT}^{\sin(\phi_h-\phi_S)}\sin\left(\phi_h-\phi_S\right)+\varepsilon A_{UT}^{\sin(\phi_h+\phi_S)}\sin\left(\phi_h+\phi_S\right)+\varepsilon A_{UT}^{\sin(3\phi_h-\phi_S)}\sin\left(3\phi_h-\phi_S\right) \\ &+\sqrt{2\varepsilon\left(1+\varepsilon\right)}A_{UT}^{\sin\phi_S}\sin\phi_S+\sqrt{2\varepsilon\left(1+\varepsilon\right)}A_{UT}^{\sin(2\phi_h-\phi_S)}\sin\left(2\phi_h-\phi_S\right)\right] \\ &+S_T\lambda\left[\sqrt{\left(1-\varepsilon^2\right)}A_{LT}^{\cos\phi_S}\cos\phi_S+\sqrt{2\varepsilon\left(1-\varepsilon\right)}A_{LT}^{\cos(2\phi_h-\phi_S)}\cos\left(2\phi_h-\phi_S\right)\right]\right\},\end{aligned}$$

LO LSA/TSA	twist-2: $PDF \otimes FF$	subleading LSA/TSA	higher-twist PDF \otimes FF	WWA twist-2: $PDF \otimes FF$
$A_{UL}^{\sin(2\phi_h)}$	$h_{1L}^{\perp q} \otimes H_{1q}^{\perp h}$	$A_{UL}^{\sin(\phi_h)}$	$xh_L^q\otimes H_{1q}^{\perp h}, xf_L^{\perp q}\otimes D_{1q}^h$	$h_{1L}^{\perp q} \otimes H_{1q}^{\perp h}$
A_{LL}	$g^q_{1L} \otimes D^h_{1q}$	$A_{LL}^{\cos(\phi_h)}$	$xe_L^q\otimes H_{1q}^{\perp h}, xg_L^{\perp q}\otimes D_{1q}^h$	$g^q_{1L}\otimes D^h_{1q}$
$A_{UT}^{\sin(\phi_h - \phi_S)}$	$f_{1T}^{\perp q}\otimes D_{1q}^{h}$	$A_{UT}^{\sin(\phi_S)}$	$xf^q_T \otimes D^h_{1q}, xh^q_T \otimes H^{\perp h}_{1q}, xh^{\perp q}_T \otimes H^{\perp h}_{1q}$	$f_{1T}^{\perp q}\otimes D_{1q}^{h}, h_{1}^{q}\otimes H_{1q}^{\perp h}$
$A_{UT}^{\sin(\phi_h + \phi_S - \pi)}$	$h_1^q \otimes H_{1q}^{\perp h}$	$A_{UT}^{\sin(2\phi_h-\phi_S)}$	$xf_T^{\perp q}\otimes D_{1q}^h, xh_T^q\otimes H_{1q}^{\perp h}, xh_T^{\perp q}\otimes H_{1q}^{\perp h}$	$f_{1T}^{\perp q}\otimes D_{1q}^{h}, h_{1}^{q}\otimes H_{1q}^{\perp h}$
$A_{UT}^{\sin(3\phi_h - \phi_S)}$	$h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$	$A_{LT}^{\cos(\phi_S)}$	$xg^q_T \otimes D^h_{1q}, xe^q_T \otimes H^{\perp h}_{1q}, xe^{\perp q}_T \otimes H^{\perp h}_{1q}$	$g^q_{1T}\otimes D^h_{1q}$
$A_{LT}^{\cos(\phi_h - \phi_S)}$	$g^q_{1T}\otimes D^h_{1q}$	$A_{LT}^{\cos(2\phi_h-\phi_S)}$	$xg_T^{\perp q}\otimes D_{1q}^h, xe_T^q\otimes H_{1q}^{\perp h}, xe_T^{\perp q}\otimes H_{1q}^{\perp h}$	$g^q_{1T}\otimes D^h_{1q}$

7 June 2018

COMPASS

SIDIS longitudinal II

Proton 2007 and 2011 Q² < 1

The main challenge in the low- Q^2 analysis is the suppression of events due to muon scattering off target electrons. These events are removed by a cut on the product of the angle between the virtual photon and the electron candidate and the particle charge $q\vartheta$.

The results for A_1^p for both data sets are compared to previous measurements. The increase in precision is evident. The COMPASS data show a small, nearly constant asymmetry of about 1% at small *x*. The resulting values for g_1^p are shown in together with the systematic error band. For comparison with model predictions various binnings, e.g. *x*, Q^2 and *v*, *x*. The preparation is ongoing.

SIDIS transverse

New approach continued: weighted asymmetries

Asymmetries obtained by weighting the spin-dependent part of the cross-section with powers of p^{h}_{T} .

Main advantage - convolution integrals becomes products \rightarrow no parametrization of the unknown transverse momentum dependence of PDFs and FFs is needed.

$$A_{Siv}^{(p_T^h/zM)}(x,z) = 2\frac{\sum_q e_q^2 f_{1T}^{\perp(1)\,q}(x) \cdot D_1^q(z)}{\sum_q e_q^2 f_1^q(x) \cdot D_1^q(z)},$$

Important: large statistics, good acceptance.

Allows to extract first moment of Sivers

$$f_{1T}^{\perp(1)}(x,Q^2) = \int d^2k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T,Q^2).$$

COMPASS

SIDIS transverse

Sivers and TSA in the Drell-Yan Q² bins

Sivers TMD PDF has a very particular feature - it contributes with opposite sign to SIDIS and DY. It is considered to be an essential prediction of Quantum Chromodynamics (QCD) going to be tested by COMPASS. If Sivers function comparison SIDIS $\leftarrow \rightarrow$ DY is done at the same Q² we drop the uncertainties from the unknown QCD evolution of the Sivers TMD.

Fig. 2: Mean TSAs in the four DY Q^2 -ranges. Systematic uncertainties are shown as error bands next to the vertical axis. For each Q^2 -range also the average x-values are given.

Jan Friedrich

COMPASS

SIDIS longitudinal

Deuteron data: Published: 2002 and 2004 Q²>1

This report – Deuteron 2006 Q²>1

Proton data: Published: $2007, 2011 \ Q^2 > 1$

This report: Proton 2007, 2011 $Q^2 < 1$

(SI)DIS longitudinal I – Final results

Deuteron $g_1^d Q^2 > 1$

Jan Friedrich

Published the final COMPASS result for double spin asymmetry A_1^{d} and longitudinal spin structure function g_1^{d} (deuteron data set 2002-2004, 2006) <u>PLB 769 (2017) 034</u>. Together with the results on the proton spin structure function g_1^{p} , these results constitute the COMPASS legacy on the measurements of the g_1 structure function.

<u>All Deuteron data Δg/g final result</u> EPJC 77 (2017) 209

Change over for Polarised Drell-Yan run

 \rightarrow

COMPASS

Group	function	comment	Contacted?
Various TE-CRG-ML	Helium, piping, magnets	Reserve people, Check availability	yes
EN-EL	Electricity, cabling	400V, 48V, AUL	yes
TE-EPC-LPC	Power supplies	Ready Jan. 2018	yes
DT-DI	Programming, connection		yes
EN-HE	Platform, rotation, shielding		yes
TE-CRG-OD	Helium consumption Cold box Dewar LN ₂	Check for larger Dewar Check piquet service	yes
EN-EA	CEDAR/magnet support		Asking soon

Better trigger performance control

Additional Monitoring Features

Adding signal splitter and scaler direct after the CFDs:

- Real-time monitoring of un-triggered rates of PMTs
- Determination of workingpoint under final condition for all **PMTs**

Beniamin Moritz Veit

Central production I

Central production, proton beam in 2008 and 2009.

Analysis is in progress:

- two mesons in the final state ($\pi^+\pi^-$, $\pi^0\pi^0$ and K⁺ K⁻)
- at COMPASS kinematics P-R, R-R and diffraction processes

- *S*, *P* and *D* waves (spin projection $M \le 1$) contribute

significantly.

S wave exhibit some contamination by $\rho(770)$ meson – to clarify PWA was performed in t_1 t_2 bins.

Low t_1 and t_2 - ρ (770) signal has practically vanished. These bins are dominated by a double-Pomeron exchange mechanism where ρ production is forbidden (C-parity conservation)

More work is needed to develop a method that correctly takes into account the $\rho(770)$ contamination in the S-wave.

Mapping Proton Quark Structure using Petabytes of COMPASS data NSF grant#1713684

- Blue Waters: supercomputer at NCSA (National Center for Supercomputing Applications) in Urbana-Champaign, Illinois, USA. 22,500 nodes with each 32 CPUs = 720,000 CPUs

- Allocation over 9 million node hours for COMPASS data production (real and MC)

- Blue Waters will allow to process 1 year of COMPASS data taking in ~ 5 days wall time. Pilot Real Data productions with PanDA.

- PanDA = Production ANd Distributed Analysis = data production and monitoring system developed for ATLAS-LHC.

- **Pilot MC mass production**: >12 billion events for Drell-Yan (DY, J/Psi, Psi', OC), purpose e.g. multi-dimensional acceptance correction

- **2-dimensional efficiency maps** of all of the ~ 200 COMPASS tracking layers.

(SI)DIS longitudinal II

Proton 2007 and 2011 Q² < 1

Large gain in the precision (see A_1^p for both data).

Small, nearly constant asymmetry of about 1% at small *x*.

The resulting values for g_1^p will be published in various binnings, e.g. *x*, Q^2 and *v*, *x* for comparison with theory predictions.

The paper preparation is ongoing.

