Flavoured Axion Phenomenology

Fredrik Björkeroth¹

in collaboration with: Eung Jin Chun², Stephen F. King³

¹INFN-LNF, ²KIAS, ³University of Southampton

Flavour and Dark Matter 2018, Karlsruhe, 24.09.18

This talk will cover

- 1. Theory
- 2. Phenomenology: hadrons
- 3. Phenomenology: leptons

This talk will cover

- 1. Theory
- 2. Phenomenology: hadrons
- 3. Phenomenology: leptons

Based on work in

PLB 777 (2018) 428-434 [1711.05741 [hep-ph]] JHEP 1808 (2018) 117 [1806.00660 [hep-ph]] In more detail:

- 1. Theory
 - Flavoured Peccei-Quinn symmetry
 - Axion couplings to the SM
 - A to Z with Pati-Salam: a UV-complete model

In more detail:

- 1. Theory
 - Flavoured Peccei-Quinn symmetry
 - Axion couplings to the SM
 - A to Z with Pati-Salam: a UV-complete model
- 2. Phenomenology: hadrons
 - Two-body meson (K, D, B) decays
 - Axion-meson mixing

In more detail:

- 1. Theory
 - Flavoured Peccei-Quinn symmetry
 - Axion couplings to the SM
 - A to Z with Pati-Salam: a UV-complete model
- 2. Phenomenology: hadrons
 - Two-body meson (K, D, B) decays
 - Axion-meson mixing
- 3. Phenomenology: leptons
 - Two-body decays $\ell_1 \rightarrow \ell_2 a$
 - $\circ~$ Radiative decays ${\it l}_1 \rightarrow {\it l}_2 a \gamma$
 - $\circ \mu \rightarrow 3e$
 - $\circ \mu e$ conversion

1. Theory

- Flavoured Peccei-Quinn symmetry
- $\circ~\mbox{Axion}$ couplings to the SM
- $\circ\,$ A to Z with Pati-Salam: a UV-complete model

The strong *CP* problem is of almost no consequence

[paraphrasing Michael Dine, talk 2015]

The strong *CP* problem is of almost no consequence [paraphrasing Michael Dine, talk 2015]

Allowed term in QCD

$$\mathcal{L} \supset ar{ heta} rac{g^2}{32\pi^2} G_{\mu
u} \tilde{G}^{\mu
u}, \quad ar{ heta} = heta_{
m QCD} + {
m arg~det}~ M^u M^d$$

Values

 $\circ~$ Measurement: neutron EDM [Pendlebury et al '15]

$$ar{ heta} \lesssim 10^{-10}$$

- $\circ~$ Naively: $\bar{\theta} \sim 1$
- $\circ\,$ Anthropically: $\bar{\theta}\sim 10^{-3}$ is fine [Dine, Draper '15]
- $\circ~$ Exact strong CP $(\bar{\theta}=0)$ not necessary

Ingredients in a standard PQ solution

- Global $U(1)_{PQ}$ symmetry with chiral anomaly
- $\circ~$ Complex scalar field $\varphi \to \langle \varphi \rangle$ which breaks $U(1)_{PQ}$

Ingredients in a standard PQ solution

- Global $U(1)_{PQ}$ symmetry with chiral anomaly
- Complex scalar field $\varphi \rightarrow \langle \varphi \rangle$ which breaks $U(1)_{PQ}$

Archetypal "invisible axion" models

KSVZ $\mathcal{L} \supset \lambda \varphi \overline{Q} Q$ • Add: heavy quarks Q• Axion- ψ_{SM} coupling: loop level DFSZ

$$\mathcal{L} \supset \lambda \varphi^2 H_u H_d$$

- Add: second Higgs doublet
- \circ Axion- $\psi_{
 m SM}$ coupling: tree level

$U(1)_{PQ}$ does not need to be put in by hand!

- \rightarrow accidental PQ symmetry
- \circ From \mathbb{Z}_N [Babu, Gogoladze, Wang '03, Dias, Pleitez, Tonasse '02, '04]
- In SUSY [Chun, Lukas '92]
- From gauge symmetry [Di Luzio, Nardi, Ubaldi '16]

$U(1)_{PQ}$ does not need to be put in by hand!

- \rightarrow accidental PQ symmetry
- \circ From \mathbb{Z}_N [Babu, Gogoladze, Wang '03, Dias, Pleitez, Tonasse '02, '04]
- In SUSY [Chun, Lukas '92]
- From gauge symmetry [Di Luzio, Nardi, Ubaldi '16]

It may arise from discrete flavour symmetries [FB, Chun, King '17] $\circ U(1)_{PQ}$ is now connected to Yukawa structures \rightarrow the axion is *flavoured*

$U(1)_{PQ}$ does not need to be put in by hand!

- \rightarrow accidental PQ symmetry
- $\circ~$ From \mathbb{Z}_N [Babu, Gogoladze, Wang '03, Dias, Pleitez, Tonasse '02, '04]
- In SUSY [Chun, Lukas '92]
- From gauge symmetry [Di Luzio, Nardi, Ubaldi '16]
- It may arise from discrete flavour symmetries [FB, Chun, King '17]
 - $U(1)_{PQ}$ is now connected to Yukawa structures \rightarrow the axion is *flavoured*

Other recent developments in flavoured axions

- Flaxion [Ema, Hamaguchi, Moroi, Nakayama '16]
- Axiflavon [Calibbi, Goertz, Redigolo, Ziegler, Zupan '16]

A low scales, the relevant Lagrangian is

$$\mathcal{L} = \mathcal{L}_{ ext{kin}} + \mathcal{L}_m + \mathcal{L}_{\partial} + \mathcal{L}_{ ext{anomaly}}$$

where

$$\begin{aligned} \mathcal{L}_{\rm kin} + \mathcal{L}_m &= \frac{1}{2} (\partial_\mu a)^2 - \frac{1}{2} m_a^2 a^2 + \sum_{f=u,d,e} \bar{f}_i (\partial - m_i) f_i, \\ \mathcal{L}_\partial &= -\frac{\partial_\mu a}{v_{PQ}} \sum_{f=u,d,e} \bar{f}_i \gamma^\mu (V_{ij}^f - A_{ij}^f \gamma_5) f_j, \\ \mathcal{L}_{\rm anomaly} &= \frac{\alpha_s}{8\pi} \frac{a}{f_a} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} + c_{a\gamma} \frac{\alpha}{8\pi} \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} \end{aligned}$$

Focus on axion couplings to fermions

$$\mathcal{L}_{\partial} = - rac{\partial_{\mu}\partial}{V_{PQ}} \sum_{f=u,d,e} \overline{f}_i \gamma^{\mu} (V^f_{ij} - A^f_{ij} \gamma_5) f_j,$$

where

$$V^{f} = \frac{1}{2} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} + U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$
$$A^{f} = \frac{1}{2} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} - U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$

$$\begin{array}{l} \circ \ x_{f_L} = \operatorname{diag}(x_{f_{L1}}, x_{f_{L2}}, x_{f_{L3}}) \ , \ x_{f_R} = \operatorname{diag}(x_{f_{R1}}, x_{f_{R2}}, x_{f_{R3}}) \\ \circ \ U_{Lf} \ \text{and} \ U_{Rf} \ \text{are unitary matrices:} \ Y^f_{\operatorname{diag}} = U^{\dagger}_{Lf} Y^f U_{Rf} \\ \circ \ V_{\operatorname{CKM}} = U^{\dagger}_{Lu} U_{Ld} \end{array}$$

$$V^{f} = \frac{1}{2} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} + U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$
$$A^{f} = \frac{1}{2} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} - U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$

Special cases

1. All generations couple equally: x_{f_L} , $x_{f_R} \propto l_3$

$$\begin{array}{lll} V^f &=& \frac{1}{2} (x_{f_L} + x_{f_R}) \mathbb{I}_3 \\ A^f &=& \frac{1}{2} (x_{f_L} - x_{f_R}) \mathbb{I}_3 \end{array} \Rightarrow \text{no flavour violation!} \end{array}$$

In standard DFSZ it's always possible to arrange $x_{f_L} = -x_{f_R} \Rightarrow V^f = 0$

2. Anomaly-free: $x_{f_L} = x_{f_R}$ \rightarrow no chiral anomaly ($N_{DW} = 0$) \rightarrow no PQ solution! A unified model of flavour: "A to Z" [King '14, King, Di Bari '15]

- Pati-Salam gauge group $SU(4)_C \times SU(2)_L \times SU(2)_R$
- A₄ family symmetry
- \mathbb{Z}_N family/shaping symmetries

Can accommodate all quarks/leptons, masses + mixings

Pati-Salam $[SU(4)_C \times SU(2)_L \times SU(2)_R]$

• Left-handed fermions in

$$F_i \sim (4, 2, 1)_i = \begin{pmatrix} u_r & u_g & u_b & \nu \\ d_r & d_g & d_b & e \end{pmatrix}_i$$

• Right-handed fermions in

$$F_{i}^{c} \sim (\bar{4}, 1, 2)_{i} = \begin{pmatrix} u_{r}^{c} & u_{g}^{c} & u_{b}^{c} & N^{c} \\ d_{r}^{c} & d_{g}^{c} & d_{b}^{c} & e^{c} \end{pmatrix}_{i}$$

\mathbf{A}_4

• Left-handed fermions in triplet

$$F \sim 3 = (F_1, F_2, F_3)$$

• Right-handed fermions in singlets

$$F_1^c, \ F_2^c, \ F_3^c \sim 1$$

Features

- Matter couples to ϕ_i : A_4 triplets + gauge singlets
- Yukawa couplings become dynamical:

$$y_{ij}FF^{c}H \rightarrow \frac{\langle \phi_i \rangle}{\Lambda}F_iF_j^{c}H$$

 $\circ~\mathcal{L}$ has accidental $U(1)_{PQ}$ with generation-dependent PQ charges

Field	PS	A_4	$U(1)_{PQ}$
$ \begin{array}{c} F \\ F_{1,2,3}^c \\ \phi_i^f \end{array} $	(4, 2, 1) (4, 1, 2) 1	3 1 3	0 2,1,0

• Physical axion = linear combination of ϕ_i^f phase fields

 $f_a \gtrsim 10^{12}$ GeV is close to cosmological upper bound

Dark matter axion? Mass: $m_a \sim 1 - 10 \mu \text{eV}$

Axion couplings to matter predicted by Yukawa structures

Flavour violation via axion interactions

- 2. Phenomenology: hadrons
 - Two-body meson (K, D, B) decays
 - Axion-meson mixing
 - Axion-pion mixing

Decay: $P \rightarrow P'a$, where $P = (\bar{q}_P q')$, $P' = (\bar{q}_{P'}q')$. Branching ratio

$$\operatorname{Br}(P \to P'a) = \frac{1}{16\pi\Gamma(P)} \frac{\left|V_{q_Pq_{P'}}^f\right|^2}{v_{PQ}^2} m_P^3 \left(1 - \frac{m_{P'}^2}{m_P^2}\right)^3 |f_+(0)|^2,$$

0	$f_+(0)$ is a hadronic form factor	Decay	f ₊ (0)
0	Only unknown quantity is the ratio	$K ightarrow \pi$	1
	$ V^{\dagger} /v_{PQ}$	$D ightarrow \pi$	0.74(6)(4)
0	Example: $K^+ \rightarrow \pi^+ a$ decay proceeds	$D \to K$	0.78(5)(4)
-	by a by dowith coupling strength	$D_s \rightarrow K$	0.68(4)(3)
	by $s \rightarrow aa$ with coupling strength	$B ightarrow \pi$	0.27(7)(5)
	$V_{sd}^a \equiv V_{21}^a$	$B \to K$	0.32(6)(6)

 $B_s \rightarrow K$ 0.23(5)(4)

$\circ\,$ NA62 @ CERN SPS: $K^+ \to \pi^+ a \; (K^+ \to \pi^+ \nu \bar{\nu})$

- $\circ~$ Current status: one $\nu\bar{\nu}$ event! [R. Marchevski at Moriond '18]
- $\circ~{\rm Reach:~Br} \lesssim 1 \times 10^{-12}$ (by end of Run 3) \rightarrow most promising probe!

• KLEVER @ CERN SPS: $K^0_L ightarrow \pi^0 a$

- Current status: proposed (early stages) [Moulson 16']
- Installed during LS3, taking data in 2026.
- Reuses some of NA62 infrastructure; liquid Kr calorimeter

- Belle(-II): B and B_s decays
 - $\circ~$ Current status: ${\rm Br} < {\cal O}(10^{-5})$ for $B^\pm \to {\cal K}^\pm \nu \bar{\nu}$
 - Reach: possibly full OoM improvement with Belle-II

• What about *D* decays?

Define constant $\tilde{c}_{P \rightarrow P'}$, such that

$$\operatorname{Br}(P \to P'a) = \tilde{c}_{P \to P'} \left| V_{q_P q_{P'}}^f \right|^2 \left(\frac{10^{12} \text{ GeV}}{v_{PQ}} \right)^2$$

where

$$\tilde{c}_{P \to P'} = \frac{1}{16\pi \,\Gamma(P)} \frac{m_P^3}{(10^{12} \text{ GeV})^2} \left(1 - \frac{m_{P'}^2}{m_P^2}\right)^3 |f_+(0)|^2$$

Decay	Branching ratio	Experiment	$\tilde{c}_{P \rightarrow P'}$	$v_{PQ}/{\rm GeV}$
$K^+ ightarrow \pi^+ a$	$< 0.73 \times 10^{-10} \\ < 0.01 \times 10^{-10} * \\ < 1.2 \times 10^{-10} \\ < 0.59 \times 10^{-10} \end{aligned}$	E949 + E787 NA62 (future) E949 + E787 E787	3.51×10^{-11}	$> 6.9 \times 10^{11} V_{21}^d > 5.9 \times 10^{12} V_{21}^d $
$egin{array}{c} \mathcal{K}^0_L ightarrow \pi^0 a \ (\mathcal{K}^0_L ightarrow \pi^0 u ar{ u}) \end{array}$	$< 5 imes 10^{-8}$ (< 2.6 $ imes 10^{-8}$)	KOTO E391a	3.67×10^{-11}	$> 2.7 \times 10^{10} V_{21}^d $
$B^{\pm} ightarrow \pi^{\pm} a \ (B^{\pm} ightarrow \pi^{\pm} u ar{ u})$	$< 4.9 \times 10^{-5} \\ (< 1.0 \times 10^{-4}) \\ (< 1.4 \times 10^{-4})$	CLEO BaBar Belle	5.30×10^{-13}	$> 1.0 \times 10^8 V_{31}^d $
$B^{\pm} ightarrow K^{\pm} a$ $(B^{\pm} ightarrow K^{\pm} u ar{ u}$	$ \begin{array}{c} < 4.9 \times 10^{-5} \\ (< 1.3 \times 10^{-5}) \\ (< 1.9 \times 10^{-5}) \\ (< 1.5 \times 10^{-6})^* \end{array} $	CLEO BaBar Belle Belle-II (future)	7.26×10^{-13}	$> 1.2 \times 10^8 V_{32}^d $
$egin{array}{c} B^0 ightarrow \pi^0 a \ (B^0 ightarrow \pi^0 u ar u) \end{array}$	$(< 0.9 \times 10^{-5})$	Belle	4.92×10^{-13}	$\gtrsim 2.3 imes 10^8 V_{31}^d $
$B^{0} \to K^{0}_{(S)}a$ $(B^{0} \to K^{0}\nu\bar{\nu})$	$< 5.3 \times 10^{-5}$) (< 1.3 × 10^{-5})	CLEO Belle	6.74×10^{-13}	$> 1.1 \times 10^8 V_{32}^d $
$ \begin{array}{c} D^{\pm} \rightarrow \pi^{\pm} a \\ D^{0} \rightarrow \pi^{0} a \\ D^{\pm}_{s} \rightarrow K^{\pm} a \\ B^{0}_{s} \rightarrow \overline{K}^{0} a \end{array} $	< 1 < 1 < 1 < 1 < 1		$\begin{array}{c} 1.11\times 10^{-13} \\ 4.33\times 10^{-14} \\ 4.38\times 10^{-14} \\ 3.64\times 10^{-13} \end{array}$	$\begin{array}{l} > 3.3 \times 10^5 V_{21}^u \\ > 2.1 \times 10^5 V_{21}^u \\ > 2.1 \times 10^5 V_{21}^u \\ > 6.0 \times 10^5 V_{31}^d \end{array}$

Limits

Let us rotate away the anomaly term by

$$q o e^{irac{eta_q}{2}rac{a}{f_a}\gamma_5}q, \qquad eta_q = rac{m_*}{m_q},$$

where q = u, d, s and $m_*^{-1} = m_u^{-1} + m_d^{-1} + m_s^{-1}$. The axion-quark Lagrangian transforms as

$$\mathcal{L}_{\partial}
ightarrow \mathcal{L}_{\partial}^{\prime} \supset -rac{\partial_{\mu}a}{v_{PQ}} \left[\sum_{q=u,d,s} c_{q} \bar{q} \gamma^{\mu} \gamma_{5} q + c_{sd} \bar{s} \gamma^{\mu} \gamma_{5} d + c_{sd}^{*} \bar{d} \gamma^{\mu} \gamma_{5} s
ight],$$

where

$$\begin{array}{l} c_{u} = A_{11}^{u} + N_{DW}\beta_{u}/2, \\ c_{d} = A_{11}^{d} + N_{DW}\beta_{d}/2, \\ c_{s} = A_{22}^{d} + N_{DW}\beta_{s}/2, \\ c_{sd} = A_{21}^{d}. \end{array}$$

We can write this as kinetic mixing between axions and mesons:

$$\mathcal{L}_{aP}^{\mathrm{eff}} = -\sum_{P} c_{P} \frac{f_{P}}{v_{PQ}} \partial_{\mu} a \partial^{\mu} P,$$

with

$$c_{\pi^{0}} = c_{u} - c_{d}, \qquad c_{\eta} = c_{u} + c_{d} - 2c_{s}$$

$$c_{\eta'} = c_{u} + c_{d} + c_{s}, \qquad c_{K^{0}} = c_{sd} = c_{\overline{K}^{0}}^{*}$$

Diagonalising the kinetic mixing,

$$a
ightarrow rac{a}{\sqrt{1 - \sum_P \eta_P^2}}, \qquad P
ightarrow P + rac{\eta_P a}{\sqrt{1 - \sum_P \eta_P^2}}$$

where

$$\eta_P \equiv \frac{c_P f_P}{v_{PQ}}$$

Meson mass splitting

$$(\Delta m_P)_{
m axion} \simeq |\eta_P|^2 m_P = |c_P|^2 rac{f_{P_0}^2}{v_{PQ}^2} m_P.$$

System	$(\Delta m_P)_{ m exp}/{ m MeV}$	$v_{PQ}/{\rm GeV}$		
	$\begin{array}{c} (3.484\pm0.006)\times10^{-12}\\ (6.25\substack{+2.70\\-2.90})\times10^{-12}\\ (3.333\pm0.013)\times10^{-10}\\ (1.1688\pm0.0014)\times10^{-8} \end{array}$	$\begin{array}{l} \gtrsim 2 \times 10^{6} c_{K^{0}} \\ \gtrsim 4 \times 10^{6} c_{D^{0}} \\ \gtrsim 8 \times 10^{5} c_{B^{0}} \\ \gtrsim 1 \times 10^{5} c_{B_{s}^{0}} \end{array}$		
PDG [Patrignani et al '16]				

Notes

- Assume central SM value
- \circ Uncertainty dominated by theory; require $(\Delta m_P)_{
 m axion} \lesssim (\Delta m_P)_{
 m exp}$
- $\circ~$ Possible improvements to $(\Delta m_{\cal K})_{\rm th}$ from lattice soon [Bai, Christ, Sachrajda '18]

- 3. Phenomenology: leptons
 - $\circ~$ Two-body decays ${\color{red}\ell_1} \rightarrow {\color{red}\ell_2} a$
 - $\circ~$ Radiative decays ${\it l}_1 \rightarrow {\it l}_2 a \gamma$
 - $\circ \mu \rightarrow 3e$
 - $\circ \mu e$ conversion

We define a total coupling

$$|C^{e}_{\ell_{1}\ell_{2}}|^{2} = |V^{e}_{\ell_{1}\ell_{2}}|^{2} + |A^{e}_{\ell_{1}\ell_{2}}|^{2}$$

Analogously to mesons, we have

$$\operatorname{Br}(\boldsymbol{\ell}_1 \to \boldsymbol{\ell}_2 \boldsymbol{a}) = \tilde{c}_{\boldsymbol{\ell}_1 \to \boldsymbol{\ell}_2} \left| C_{\boldsymbol{\ell}_1 \boldsymbol{\ell}_2}^{e} \right|^2 \left(\frac{10^{12} \text{ GeV}}{v_{PQ}} \right)^2$$

where

$$\tilde{c}_{\ell_1 \to \ell_2} = \frac{1}{16\pi\,\Gamma(\ell_1)} \frac{m_{\ell_1}^3}{(10^{12}\,\,\mathrm{GeV})^2} \left(1 - \frac{m_{\ell_2}^2}{m_{\ell_1}^2}\right)^3$$

We may also probe the angular distribution. For muons,

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} \simeq \frac{|C_{21}^e|^2}{32\pi} \frac{m_{\mu}^3}{v_{PQ}^2} (1 - AP_{\mu}\cos\theta)$$

where

$$A = -\frac{2\text{Re}[A_{21}^e(V_{21}^e)^*]}{|C_{21}^e|^2}$$

Notes

- $\circ~$ Standard Model weak interactions are 'V-A' \Leftrightarrow A=-1
- Isotropic decays (A = 0) for $A_{21}^e = 0$ or $V_{21}^e = 0$.
- $\circ~$ Strongest signal for 'V+A' (RH) interactions

• Jodidio et al @ TRIUMF [Jodidio et al '86]

- \circ Stopped μ^+ on metal foil
- Assume isotropic decays (A = 0)
- TWIST @ TRIUMF [Bayes et al '14]
 - Sensitive to anisotropies
 - Limits for A = 0 not as good as TRIUMF

• MEG(-II) @ PSI

- \circ Searching for $\mu
 ightarrow e \gamma$ in stopped μ^+
- Status: MEG completed, MEG-II under construction
- Reach: TBD

Decay	Branching ratio	Experiment	$\tilde{c}_{\ell_1 \to \ell_2}$	$v_{PQ}/{ m GeV}$
$\mu^+ ightarrow e^+ a$ $ au^+ ightarrow e^+ a$ $ au^+ ightarrow \mu^+ a$	$\begin{array}{c} < 2.6 \times 10^{-6} \\ < 2.1 \times 10^{-5} \\ < 1.0 \times 10^{-5} \\ < 5.8 \times 10^{-5} \\ \lesssim 5 \times 10^{-9} \ast \\ < 1.5 \times 10^{-2} \\ < 2.6 \times 10^{-2} \end{array}$	(A = 0) Jodidio et al (A = 0) TWIST (A = 1) TWIST (A = -1) TWIST Mu3e (future) ARGUS ARGUS	7.82×10^{-11} 4.92×10^{-14} 4.87×10^{-14}	$ \begin{array}{c} > 5.5 \times 10^9 V_{21}^{e} \\ > 1.9 \times 10^9 C_{21}^{e} \\ > 2.8 \times 10^9 C_{21}^{e} \\ > 1.2 \times 10^9 C_{21}^{e} \\ > 1.8 \times 10^{61} C_{21}^{e} \\ > 1.8 \times 10^6 C_{31}^{e} \\ > 1.4 \times 10^6 C_{31}^{e} \end{array} $

Decays like $\ell_1 \rightarrow \ell_2 a \gamma$, in the limit $m_{\ell_2} = m_a = 0$, may be expressed

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d}x\,\mathrm{d}y} = \frac{\alpha \left|C_{\ell_1\ell_2}^e\right|^2 m_{\ell_1}^3}{32\pi^2 v_{PQ}^2} f(x,y)$$

where

$$f(x,y) = \frac{(1-x)(2-y-xy)}{y^2(x+y-1)}, \quad x = \frac{2E_{\ell_2}}{m_{\ell_1}}, \quad y = \frac{2E_{\gamma}}{m_{\ell_1}}$$

Kinematics and energy conservation fix

$$x, y \le 1, x + y \ge 1, \cos \theta_{2\gamma} = 1 + \frac{2(1 - x - y)}{xy}$$

Must consider

- Soft divergences
- Experimental cuts (e.g. $E_{\gamma} > 40$ MeV in MEG)

Decay	Branching ratio	Experiment
$\mu^+ ightarrow e^+ \gamma$	$< 4.2 \times 10^{-13}$	MEG
	$\lesssim 6 imes 10^{-14} st$	MEG-II (future)
$ au^- o e^- \gamma$	$< 3.3 imes 10^{-8}$	BaBar
$ au^- o \mu^- \gamma$	$< 4.4 imes 10^{-8}$	BaBar

Best limit on $\mu \to ef\gamma$ (for some scalar f)

- Crystal Box experiment [Bolton et al '88]
- $\circ \ {
 m Br}(\mu
 ightarrow ef \gamma) < 1.1 imes 10^{-9}$
- No assumptions on decay isotropy
- MEG-II should be more sensitive (full study needed)

 $\mu \rightarrow 3e$

Flavoured axion can mediate $\mu \to 3e$ through the μea vertex (t- and s-channel). To $\mathcal{O}(m_e^2)$, the branching ratio is

$$\begin{aligned} \operatorname{Br}(\mu^+ \to e^+ e^- e^+) &\approx \frac{m_e^2 m_{\mu}^3}{16\pi^3 \Gamma(\mu)} \frac{|A_{11}^e|^2 |C_{21}^e|^2}{v_{PQ}^4} \left(\ln \frac{m_{\mu}^2}{m_e^2} - \frac{15}{4} \right), \\ &\approx 1.43 \times 10^{-41} |A_{11}^e|^2 |C_{21}^e|^2 \left(\frac{10^{12} \text{ GeV}}{v_{PQ}} \right)^4 \end{aligned}$$

- Experiment: Mu3e @ PSI
 - Status: under construction, taking data in 2019
 - Reach: $Br < \mathcal{O}(10^{-16})$
 - 4 OoM improvement over SINDRUM (1987)
 - \circ v_{PQ} $\gtrsim 10^{6} {\rm GeV}$

The same μea vertex can mediate $\mu - e$ conversion in nuclei

$$\begin{aligned} \mathcal{R}_{\mu e}^{(A,Z)} &\equiv \frac{\Gamma(\mu^- \to e^-(A,Z))}{\Gamma_{\mu^- \mathrm{cap}}^{(A,Z)}} \\ &\sim \frac{m_{\mu}^5}{(q^2 - m_a^2)^2} \frac{(\alpha Z)^3}{\pi^2 \, \Gamma_{\mu^- \mathrm{cap}}^{(A,Z)}} \frac{m_{\mu}^2 m_N^2}{v_{PQ}^4} |C_{21}^e|^2 |S_N^{(A,Z)} C_{aN}|^2 \end{aligned}$$

Spin-dependent process [see Cirigliano '17]

• not seen: $\mathcal{O}(1)$ form factors

• Relevant couplings: C_{21}^e and $g_{aN} = C_{aN}m_N/v_{PQ}$

 \circ C_{aN} is model-dependent, depends on diagonal charges

- Experiments
 - $\circ\,$ SINDRUM-II: current best limit ${\cal R}_{\mu e}^{\rm Au} < 7 \times 10^{-13}$
 - Mu2e @ Fermilab and COMET @ J-PARC: under construction
 - Measure $R_{\mu e}^{\rm Al}$; both expected to reach 4 OoM improvement

- Flavoured axions/ALPs have a rich phenomenology
 - Meson decays, charged lepton decays
 - Meson mixing
 - $\circ \ \mu
 ightarrow e$ conversion and $\mu
 ightarrow 3e$

- Flavoured axions/ALPs have a rich phenomenology
 - Meson decays, charged lepton decays
 - Meson mixing
 - $\circ \ \mu
 ightarrow e$ conversion and $\mu
 ightarrow 3e$
- $\circ\,$ Model building
 - Discrete family symmetries and axions go well together
 - Flavour data fixes all axion couplings: very predictive!
 - $\circ\,$ In unified scenaries (e.g. A to Z), we can have correlations
 - $\circ\,$ A to Z model: no "new" scalars necessary, axion is a flavon

- Flavoured axions/ALPs have a rich phenomenology
 - Meson decays, charged lepton decays
 - Meson mixing
 - $\circ \ \mu
 ightarrow e$ conversion and $\mu
 ightarrow 3e$
- $\circ\,$ Model building
 - o Discrete family symmetries and axions go well together
 - Flavour data fixes all axion couplings: very predictive!
 - $\circ\,$ In unified scenaries (e.g. A to Z), we can have correlations
 - $\circ\,$ A to Z model: no "new" scalars necessary, axion is a flavon
- $\circ~$ Looking forward to new experiments coming online!
 - NA62
 - MEG-II
 - Belle-II
 - ∘ Mu3e

Thank You!

Backup slides

Full Yukawa/mass superpotential

$$\begin{split} W_{F}^{\text{eff}} &= (F \cdot h_{3})F_{3}^{c} + \frac{(F \cdot \phi_{1}^{u})h_{u}F_{1}^{c}}{\langle \Sigma_{u} \rangle} + \frac{(F \cdot \phi_{2}^{u})h_{u}F_{2}^{c}}{\langle \Sigma_{u} \rangle} \\ &+ \frac{(F \cdot \phi_{1}^{d})h_{d}F_{1}^{c}}{\langle \Sigma_{15} \rangle} + \frac{(F \cdot \phi_{2}^{d})h_{15}^{d}F_{2}^{c}}{\langle \Sigma_{d} \rangle} + \frac{(F \cdot \phi_{1}^{u})h_{d}F_{1}^{c}}{\langle \Sigma_{d} \rangle} \\ W_{\text{Maj}}^{\text{eff}} &= \frac{\overline{H^{c}}\overline{H^{c}}}{\Lambda} \left(\frac{\xi^{2}}{\Lambda^{2}}F_{1}^{c}F_{1}^{c} + \frac{\xi}{\Lambda}F_{2}^{c}F_{2}^{c} + F_{3}^{c}F_{3}^{c} + \frac{\xi}{\Lambda}F_{1}^{c}F_{3}^{c}\right) \end{split}$$

Notes

Sample diagrams

Field	G _{PS}	A_4	\mathbb{Z}_5	\mathbb{Z}_3	\mathbb{Z}_5'	R	$U(1)_{PQ}$
F	(4, 2, 1)	3	1	1	1	1	0
$F_{1,2,3}^{c}$	(4, 1, 2)	1	$lpha$, $lpha^3$, 1	eta,eta^2 , 1	γ^3 , γ^4 , 1	1	-2, -1, 0
$\overline{H^c}$	(4, 1, 2)	1	1	1	1	0	0
H^{c}	(4, 1, 2)	1	1	1	1	0	0
$\phi_{1,2}^{u}$	(1, 1, 1)	3	$lpha^4$, $lpha^2$	eta^2 , eta	γ^2 , γ	0	2,1
$\phi_{1,2}^{d'}$	(1, 1, 1)	3	α^3 , α	eta^2 , eta	γ^2 , γ	0	2,1
h ₃	(1, 2, 2)	3	1	1	1	0	0
hu	(1, 2, 2)	$1^{\prime\prime}$	α	1	1	0	0
h_{15}^{u}	(15, 2, 2)	1	α	1	1	0	0
h _d	(1, 2, 2)	1'	α^3	1	1	0	0
h_{15}^{d}	(15, 2, 2)	1'	α^4	1	1	0	0
Σ_u	(1, 1, 1)	$1^{\prime\prime}$	α	1	1	0	0
Σ_d	(1, 1, 1)	1'	α^3	1	1	0	0
Σ_{15}^d	(15, 1, 1)	1'	α^2	1	1	0	0
ξ	(1, 1, 1)	1	α^4	β^2	γ^2	0	2

Discrete \mathbb{Z}_N symmetries

 $\circ \mathbb{Z}_5$

Shaping symmetry of original A to Z model Ensures CSD(4)

 $\circ \mathbb{Z}_3$

Ensures PQ symmetry at renormalisable level Forbids most off-diagonal terms in $Y^{d,e}$ (new!)

 $\circ \mathbb{Z}'_5$

Protects PQ symmetry to sufficient order

Yukawa and mass matrices

$$Y^{u} = Y^{\nu} = \begin{pmatrix} 0 & b & \epsilon_{13}c \\ a & 4b & \epsilon_{23}c \\ a & 2b & c \end{pmatrix} \qquad Y^{d} = \begin{pmatrix} y^{0}_{d} & 0 & 0 \\ By^{0}_{d} & y^{0}_{s} & 0 \\ By^{0}_{d} & 0 & y^{0}_{b} \end{pmatrix}$$
$$Y^{e} = \begin{pmatrix} -(y^{0}_{d}/3) & 0 & 0 \\ By^{0}_{d} & xy^{0}_{s} & 0 \\ By^{0}_{d} & 0 & y^{0}_{b} \end{pmatrix} \qquad M_{R} = \begin{pmatrix} M_{1} & 0 & M_{13} \\ 0 & M_{2} & 0 \\ M_{13} & 0 & M_{3} \end{pmatrix}$$

Neutrino matrix after seesaw,

$$m^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 4 & 2 \\ 4 & 16 & 8 \\ 2 & 8 & 4 \end{pmatrix} + m_c e^{i\xi} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

PQ charges

$$\begin{split} W_F^{\text{eff}} &\sim (F \cdot h_3) F_3^c + (F \cdot \phi_1^u) h_u F_1^c + (F \cdot \phi_2^u) h_u F_2^c \\ & 0 & 0 & 0 & 2 & 0 & -2 & 0 & 1 & 0 & -1 \\ & & + (F \cdot \phi_1^d) h_d F_1^c + (F \cdot \phi_2^d) h_{15}^d F_2^c + (F \cdot \phi_1^u) h_d F_1^c \\ & 0 & 2 & 0 & -2 & 0 & 1 & 0 & -1 & 0 & 2 & 0 & -2 \\ W_{\text{Maj}}^{\text{eff}} &\sim \overline{H^c} \overline{H^c} \left(\xi \ \xi \ F_1^c F_1^c + \xi \ F_2^c F_2^c + F_3^c F_3^c + \xi \ F_1^c F_3^c \right) \\ & 0 & 0 & 2 & 2 & -2 & 2 & -1 & -1 & 0 & 0 & 2 & -2 & 0 \end{split}$$

Notes

- $\circ~\ensuremath{\mathsf{PQ}}$ symmetry realised also at renormalisable level
- $\circ~$ Higgs sector completely neutral \rightarrow no GUT-scale PQ breaking
- $U(1)_{PQ}$ assignments unique
- Third family is neutral

Breaking $U(1)_{PQ}$

• $\phi_i^f \rightarrow \langle \phi_i^f \rangle \sim v_{\phi_1^f}$ breaks all discrete symmetries and $U(1)_{PQ}$ • PQ-breaking scale

$$v_{PQ}^2 = (N_a f_a)^2 = \sum_{\phi} x_{\phi}^2 v_{\phi}^2$$

• Dominated by largest VEV: $\langle \phi_2^u \rangle$ (related to charm mass)

Axion

$$a = \frac{1}{v_{PQ}} \sum_{\varphi} x_{\varphi} v_{\varphi} a_{\varphi}$$

Domain wall number

$$N_a \equiv \left| 6x_F + 2\sum_i x_{F_i^c} \right| = \left| 6(0) + 2(-2 + -1 + 0) \right| = 6$$

Protecting the PQ symmetry

Consider terms like

$$\frac{\{\phi\}^n}{M_P^n}W$$

These generate a PQ-breaking axion mass

$$m_*^2 \sim m_{3/2}^2 \frac{v_{PQ}^{n-2}}{M_P^{n-2}}$$

[Holman et al '92] [Kamionkowski, March-Russell '92] [Barr, Seckel '92]

We require $m_*^2/m_a^2 < 10^{-10}$, where

$$m_a^2 \approx m_\pi^2 \frac{f_\pi^2}{f_a^2}$$

To protect our solution, we forbid all PQ-violating terms like $\{\phi\}^n$ up to n = 7 (or dim = 10)!

Phenomenology - Fit

Fitting to quark and lepton mixing data

Simple MCMC

• Minimise χ^2 to find best fit $\chi^2 = \sum_i \left(\frac{P(x_i) - \mu_i}{\sigma_i}\right)^2$

 Calculate 95% credible intervals (hpd) Measured values run up to $M_{\rm GUT}$ (assuming MSSM) [Antusch, Maurer '13]

Leptons

Observable		Data		Model
	Central value	1σ range	Best fit	Interval
θ_{12}^{ℓ} /°	33.57	$32.81 \rightarrow 34.32$	32.88	$32.72 \rightarrow 34.23$
$\theta_{13}^{\ell}/^{\circ}$	8.460	$8.310 \rightarrow 8.610$	8.611	$8.326 \rightarrow 8.882$
$\theta_{23}^{\ell}/^{\circ}$	41.75	$40.40 \rightarrow 43.10$	39.27	37.35 ightarrow 40.11
$\delta^{\ell}/^{\circ}$	261.0	$202.0 \rightarrow 312.0$	242.6	$231.4 \rightarrow 249.9$
$y_e / 10^{-5}$	1.004	$0.998 \rightarrow 1.010$	1.006	$0.911 \rightarrow 1.015$
y_{μ} /10 ⁻³	2.119	$2.106 \rightarrow 2.132$	2.116	$2.093 \rightarrow 2.144$
$y_{\tau} / 10^{-2}$	3.606	$3.588 \rightarrow 3.625$	3.607	$3.569 \rightarrow 3.643$
$\Delta m^2_{21} / 10^{-5} { m eV}^2$	7.510	$7.330 \rightarrow 7.690$	7.413	$7.049 \rightarrow 7.762$
$\Delta m_{31}^2 / 10^{-3} {\rm eV}^2$	2.524	$2.484 \rightarrow 2.564$	2.540	$2.459 \rightarrow 2.616$
<i>m</i> ₁ /meV			0.187	0.022 ightarrow 0.234
<i>m</i> ₂ /meV			8.612	$8.400 \rightarrow 8.815$
<i>m</i> ₃ /meV			50.40	$49.59 \rightarrow 51.14$
$\sum m_i / \text{meV}$		< 230	59.20	$58.82 \rightarrow 60.19$
α_{21}			10.4	-38.0 ightarrow 70.1
α_{31}			272.1	$218.2 \rightarrow 334.0$
<i>т_{ββ} /</i> meV			1.940	$1.892 \rightarrow 1.998$

We set $\tan \beta = 5$, $M_{\rm SUSY} = 1$ TeV and $\bar{\eta}_b = -0.24$

Quarks

Observable	Data		Model		
	Central value 1σ range		Best fit	Interval	
$\theta_{12}^q /^\circ$	13.03	12.99 ightarrow 13.07	13.04	12.94 ightarrow 13.11	
θ_{13}^q / \circ	0.1471	$0.1418 \rightarrow 0.1524$	0.1463	$0.1368 \rightarrow 0.1577$	
$\theta_{23}^q /^\circ$	1.700	1.673 ightarrow 1.727	1.689	1.645 ightarrow 1.753	
δ^q / \circ	69.22	66.12 ightarrow 72.31	68.85	$63.00 \rightarrow 75.24$	
$y_u / 10^{-6}$	2.982	$2.057 \rightarrow 3.906$	3.038	1.098 ightarrow 4.957	
$y_c / 10^{-3}$	1.459	$1.408 \rightarrow 1.510$	1.432	1.354 ightarrow 1.560	
Уt	0.544	$0.537 \rightarrow 0.551$	0.545	$0.530 \rightarrow 0.558$	
$y_d / 10^{-5}$	2.453	$2.183 \rightarrow 2.722$	2.296	$2.181 \rightarrow 2.966$	
$y_s / 10^{-4}$	4.856	$4.594 \rightarrow 5.118$	4.733	$4.273 \rightarrow 5.379$	
Уь	3.616	$3.500 \rightarrow 3.731$	3.607	$3.569 \rightarrow 3.643$	

We set $\taneta=$ 5, $M_{
m SUSY}=$ 1 TeV and $ar\eta_b=-0.24$

Input parameters

Parameter	Value
$ \begin{array}{c} a/10^{-5} \\ b/10^{-3} \\ c \\ y_d^0/10^{-5} \\ y_s^0/10^{-4} \\ y_b^0/10^{-2} \\ \epsilon_{13}/10^{-3} \\ \epsilon_{23}/10^{-2} \\ B \end{array} $	$\begin{array}{c} 1.246 \ e^{4.047i}\\ 3.438 \ e^{2.080i}\\ -0.545\\ 3.053 \ e^{4.816i}\\ 3.560 \ e^{2.097i}\\ 3.607\\ 6.215 \ e^{2.434i}\\ 2.888 \ e^{3.867i}\\ 10.20 \ e^{2.777i} \end{array}$
X	5.880

Parameter	Value
<i>m</i> _a /meV	3.646
m_b /meV	1.935
m_c /meV	1.151
η	2.592
ξ	2.039

Constrained sequential dominance (CSD) [King '99, '00, '02]

- $\circ\,$ SD originally devised for neutrinos:
 - 1) $N_{
 m atm}
 ightarrow$ atmospheric mass $m_{
 u_3}$ and mixing $heta_{23} \sim 45^\circ$
 - 2) $N_{
 m sol}
 ightarrow$ solar mass $m_{
 u_2}$ and solar+reactor mixing $heta_{12}, heta_{13}$
 - 3) $N_{
 m dec}$, if present, nearly decoupled from theory $o m_{
 u_1} \ll m_{
 u_{2,3}}$

CSD(n) with two neutrinos:

$$Y^{\nu} = \begin{pmatrix} 0 & b & * \\ a & nb & * \\ a & (n-2)b & * \end{pmatrix}, \qquad M_R \sim \operatorname{diag}(M_{\operatorname{atm}}, M_{\operatorname{sol}}, M_{\operatorname{dec}})$$

$$m^{\nu} = v^{2} Y^{\nu} M_{R}^{-1} (Y^{\nu})^{T}$$

= $m_{a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{b} \begin{pmatrix} 1 & n & n-2 \\ n & n^{2} & n(n-2) \\ n-2 & n(n-2) & (n-2)^{2} \end{pmatrix} + m_{c} \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$

- $\circ~$ In unified scenario, CSD is extended to the quarks!
- Consider n = 4 [King '13]. With Y^d diagonal,

$$Y^{u} = Y^{\nu} = \begin{pmatrix} 0 & b & * \\ a & 4b & * \\ a & 2b & * \end{pmatrix}$$

• To first approximation, Cabibbo angle

$$\theta_{12}^q \approx \frac{Y_{12}^u}{Y_{22}^u} \approx \frac{1}{4}$$

• This is compellingly close to the true value $\theta_{12}^q \approx 0.227$.

 $\circ~\mathsf{CSD}(4)$ achieved by A_4 triplet flavons ϕ

• Flavons acquire VEVs with particular alignments:

$$\begin{aligned} \langle \phi_1^u \rangle &= v_{\phi_1^u}(0, 1, 1), & \langle \phi_1^d \rangle &= v_{\phi_1^d}(1, 0, 0) \\ \langle \phi_2^u \rangle &= v_{\phi_2^u}(1, 4, 2), & \langle \phi_2^d \rangle &= v_{\phi_2^d}(0, 1, 0) \end{aligned}$$

• Example: first-generation up-type quarks

$$W \supset \frac{(F \cdot \phi_1^u) h_u F_1^c}{M} \to v_u \frac{v_{\phi_1^u}}{M} \left(F_1 F_2 F_3\right) \begin{pmatrix} 0\\1\\1 \end{pmatrix} F_1^c$$

• Alignments can be fixed by A₄ and orthogonality arguments, implemented by a superpotential

$$W_{
m driving} = P_{1,2}^{u,d} \left(\bar{\phi}_{1,2}^{u,d} \phi_{1,2}^{u,d} - M^2 \right) + P_{\xi} \left(\bar{\xi} \xi - M^2 \right)$$
,

Field	G _{PS}	A_4	\mathbb{Z}_5	\mathbb{Z}_3	\mathbb{Z}_5'	R	$U(1)_{PQ}$
$ \begin{array}{c} \phi^u_{1,2} \\ \phi^d_{1,2} \\ \varsigma \end{array} $	(1, 1, 1) (1, 1, 1) (1, 1, 1)	3 3 1	α^4, α^2 α^3, α	β^2, β β^2, β β^2	γ^2, γ γ^2, γ γ^2^2	0 0	2, 1 2, 1 2
$\bar{\phi}^{u}_{1,2}$	(1, 1, 1) (1, 1, 1)	3	α α, α^3	β, β^2	γ^{3}, γ^{4}	0	-2, -1
$\left \begin{array}{c} \phi_{1,2}^{a} \\ \xi \end{array} \right $	(1, 1, 1) (1, 1, 1)	3 1	α², α ⁺ α	β,β² β	γ^3, γ^4 γ^3	0	-2, -1 -2

Yukawa matrices can be diagonalised by bi-unitary matrices $V_{L,R}^{u,d}$, $U_{L,R}^{e}$

$$\begin{split} Y^{u,\mathrm{diag}} &= V_L^u Y^u (V_R^u)^\dagger, \\ Y^{d,\mathrm{diag}} &= V_L^d Y^d (V_R^d)^\dagger, \\ Y^{e,\mathrm{diag}} &= U_L^e Y^e (U_R^e)^\dagger. \end{split}$$

We transform the fields by

$$Q \to (V_L^u)^{\dagger} Q,$$

$$d^c \to (V_R^d)^{\dagger} d^c,$$

$$u^c \to (V_R^u)^{\dagger} u^c.$$

Then $Y^u \to Y^{u, \text{diag}}$, $Y^d \to V_{\text{CKM}} Y^{d, \text{diag}}$, where $V_{\text{CKM}} = V_L^u (V_L^d)^{\dagger}$.