DARK MATTER IN E₆ UNIFICATION

Jakob Schwichtenberg

based on JHEP 02 (2018) 16

September 25, 2018

Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology

Can (a larger gauge) symmetry tell us anything about dark matter?

WHICH GROUP?

WHICH GROUP?

· SU(5), SO(10), ...

- · SU(5), SO(10), ...
- \cdot But:

E. Witten - Quest for Unification

- · SU(5), SO(10), ...
- \cdot But:

E. Witten - Quest for Unification

· Only 5 exceptional groups!

- · SU(5), SO(10), ...
- · But:

E. Witten - Quest for Unification

- · Only 5 exceptional groups!
- $\cdot\,$ non-self-conjugate fermion representation
 - \rightarrow no mirror fermions
 - $\Rightarrow E_6$

- · SU(5), SO(10), ...
- \cdot But:

E. Witten - Quest for Unification

- · Only 5 exceptional groups!
- · non-self-conjugate fermion representation \rightarrow no mirror fermions

 $\Rightarrow \mathsf{E}_6$

• Automatic absence of anomalies, fermions in the fundamental representations, . . .

E₆

· Fermions in the fundamental 27-dimensional representation

$$27 = 16 \oplus 10 \oplus 1 = 16 \oplus (D, N_E, E, E^c, N_E^c, D^c) \oplus 1$$
(1)

(3 generations)

- $\cdot\,$ Gauge Bosons in the adjoint 78-dimensional representation
- $\cdot\,$ Only Scalars that couple to fermions (27 \otimes 27) $_{s}=$ 27 \oplus 351'

$$\mathcal{L}_{\rm Y} = \Psi^{\rm T} i \sigma_2 \Psi (Y_{27} H_{27} + Y_{351'} H_{351'}) + \text{h.c.}$$
(2)

$$\mathcal{L}_{Y} = \Psi^{T} i \sigma_{2} \Psi (Y_{27} H_{27} + Y_{351'} H_{351'}) + h.c.$$
(2)

- $\cdot\,$ Yukawas for SM and exotic fermions have common origin \to Fit, such that SM masses are correctly reproduced
- · Exotic fermions superheavy
- · Lightest exotic generation: $M > 10^9 \text{ GeV}$

- $\begin{array}{l} \cdot \ \ E_6\ (rank\ 6) \rightarrow SO(10)\ (rank\ 5) \\ \Rightarrow \ possibly\ \mbox{discrete\ remnant\ symmetry;} \\ (L.\ M.\ Krauss\ and\ F.\ Wilczek;\ Phys.\ Rev.\ Lett.\ 62\ (Mar,\ 1989)\ 1221-1223) \end{array}$
- $\cdot \,$ In our breaking chain: $E_6 \to \ldots \to SM \otimes \mathbb{Z}_2$
- · Under SO(10) $\otimes \mathbb{Z}_2$: 27 = 1⁺ \oplus 10⁺ \oplus 16⁻

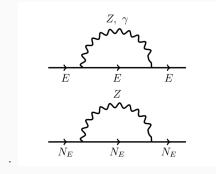
- $\begin{array}{l} \cdot \ \ E_6\ (rank\ 6) \rightarrow SO(10)\ (rank\ 5) \\ \Rightarrow \ possibly\ \mbox{discrete\ remnant\ symmetry;} \\ (L.\ M.\ Krauss\ and\ F.\ Wilczek;\ Phys.\ Rev.\ Lett.\ 62\ (Mar,\ 1989)\ 1221-1223) \end{array}$
- $\cdot \,$ In our breaking chain: $E_6 \to \ldots \to SM \otimes \mathbb{Z}_2$
- · Under SO(10) $\otimes \mathbb{Z}_2$: 27 = 1⁺ \oplus 10⁺ \oplus 16⁻
- $\cdot \Rightarrow$ Lightest exotic fermion is stable

SO(10) singlet s

 $\cdot \ m_s \simeq v_{E_6} Y$

SO(10) singlet s

 $\cdot \ m_s \simeq v_{E_6} Y$


Color-charged D

- $\cdot\,$ Bound on strongly interacting DM $\gtrsim 10^{15}$ GeV (direct detection experiments + IceCube) (Albuquerque et. al 0301188)
- \cdot ${\it I}~10^{15}~GeV > Y_1 M_{E_6}$ for $M_{E_6} < M_{PL}$

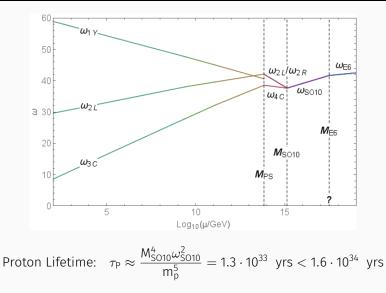
EXOTIC FERMIONS AS DM CANDIDATES

Lepton doublet (N_E, E)

 \cdot Degenerate mass before breaking of SU(2)_Y \times U(1)_Y

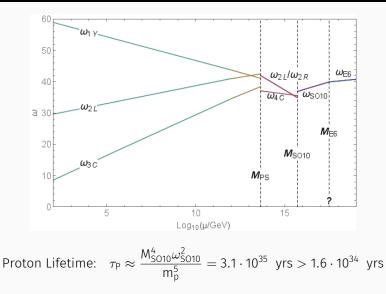
- $\cdot \Rightarrow m_{N_E} < m_E$
- \cdot N_{E} carries Hypercharge \rightarrow phenomenologically interesting, although superheavy?

A SPECIFIC SCENARIO FOR N

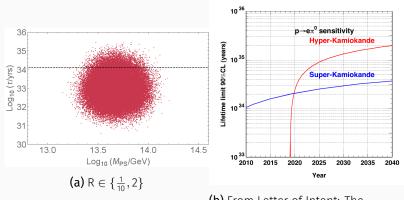

٠

$E_6 \rightarrow ? \rightarrow \mathsf{SU}(3)_C \otimes \mathsf{SU}(2)_L \otimes \mathsf{U}(1)_Y \otimes \mathbb{Z}_2$

$E_6 \rightarrow ? \rightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes \mathbb{Z}_2$


$$\begin{split} E_6 &\to SO(10) \otimes \mathbb{Z}_4 \to SU(2)_L \otimes SU(2)_R \otimes SU(4)_C \otimes D \otimes \mathbb{Z}_4 \\ &\to SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes \mathbb{Z}_2 \end{split}$$

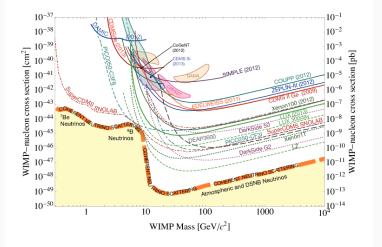
RGE RUNNING


(Super-Kamiokande 1610.03597)

RGE RUNNING WITH THRESHOLD CORRECTION

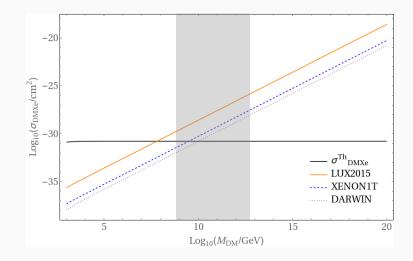
(Super-Kamiokande 1610.03597)

THRESHOLD CORRECTIONS



(b) From Letter of Intent: The Hyper-Kamiokande Experiment

Figure: Proton lifetime for randomized Scalar masses $M_S = RM_V$.


DETECTION

DIRECT DETECTION OF DARK MATTER

DIRECT DETECTION OF SUPER HEAVY DARK MATTER

$$Y(N_E) \neq 0 \rightarrow \sigma_{DMN} = \frac{G_F^2 \mu_N^2}{2\pi} \cdot \frac{1}{4} (N - 4\sin(\theta_W)Z)^2$$

CONCLUSION

- $\cdot\,$ Inherent DM candidates in the fundamental fermionic 27 of E_6
- $\cdot \ E_6 \rightarrow SO(10) \rightarrow PS \rightarrow SM$
- **Proton lifetime** slightly above present bound through threshold corrections
- \cdot Lightest exotic fermion is electrically neutral, but hypercharged and superheavy N_{E}
- · **Stable** through remnant \mathbb{Z}_2
- · Possibly direct detection signal in the near future