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Can (a larger gauge) symmetry tell us anything about dark matter?
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which group?



which group?

∙ SU(5), SO(10), . . .

∙ But:
”describing nature by a group taken from an infinite
family does raise an obvious question - why this group
and not another?”

E. Witten - Quest for Unification

∙ Only 5 exceptional groups!
∙ non-self-conjugate fermion representation
→ no mirror fermions
⇒ E6

∙ Automatic absence of anomalies, fermions in the fundamental
representations, . . .
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e6



particle content

∙ Fermions in the fundamental 27-dimensional representation

27 = 16⊕ 10⊕ 1 = 16⊕ (D,NE, E, Ec,Nc
E,Dc)⊕ 1 (1)

(3 generations)
∙ Gauge Bosons in the adjoint 78-dimensional representation
∙ Only Scalars that couple to fermions (27⊗ 27)s = 27⊕ 351′
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fermion masses

LY = ΨTiσ2Ψ(Y27H27 + Y351′H351′) + h.c. (2)

∙ Yukawas for SM and exotic fermions have common origin → Fit,
such that SM masses are correctly reproduced

∙ Exotic fermions superheavy
∙ Lightest exotic generation: M > 109 GeV
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stability

∙ E6 (rank 6) → SO(10) (rank 5)
⇒ possibly discrete remnant symmetry;
(L. M. Krauss and F. Wilczek; Phys. Rev. Lett. 62 (Mar, 1989) 1221–1223)

∙ In our breaking chain: E6 → . . . → SM⊗ Z2

∙ Under SO(10)⊗ Z2: 27 = 1+ ⊕ 10+ ⊕ 16−

∙ ⇒ Lightest exotic fermion is stable
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exotic fermions as dm candidates

SO(10) singlet s

∙ ms ≃ vE6Y

Color-charged D

∙ Bound on strongly interacting DM ≳ 1015 GeV (direct detection
experiments + IceCube) (Albuquerque et. al 0301188)

∙ E 1015 GeV > Y1ME6 for ME6 < MPL
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exotic fermions as dm candidates

Lepton doublet (NE, E)

∙ Degenerate mass before breaking of SU(2)Y × U(1)Y

∙
∙ ⇒ mNE < mE

∙ NE carries Hypercharge → phenomenologically interesting,
although superheavy?

9



a specific scenario for n



breaking chain

∙
E6 →? → SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ Z2

∙

E6 → SO(10)⊗ Z4 → SU(2)L ⊗ SU(2)R ⊗ SU(4)C ⊗ D⊗ Z4

→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ Z2
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rge running

Proton Lifetime: τP ≈ M4
SO10ω

2
SO10

m5
p

= 1.3 · 1033 yrs < 1.6 · 1034 yrs

(Super-Kamiokande 1610.03597)
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rge running with threshold correction

Proton Lifetime: τP ≈ M4
SO10ω

2
SO10

m5
p

= 3.1 · 1035 yrs > 1.6 · 1034 yrs

(Super-Kamiokande 1610.03597)
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threshold corrections

(a) R ∈ { 1
10 , 2}

(b) From Letter of Intent: The
Hyper-Kamiokande Experiment

Figure: Proton lifetime for randomized Scalar masses MS = RMV.
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detection



direct detection of dark matter

(J. Cooley 1410.4960)
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direct detection of super heavy dark matter

Y(NE) ̸= 0 → σDMN =
G2
Fµ

2
N

2π · 1
4 (N− 4 sin(θW)Z)2
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conclusion



summary

∙ Inherent DM candidates in the fundamental fermionic 27 of E6
∙ E6 → SO(10) → PS → SM
∙ Proton lifetime slightly above present bound through threshold
corrections

∙ Lightest exotic fermion is electrically neutral, but hypercharged
and superheavy NE

∙ Stable through remnant Z2

∙ Possibly direct detection signal in the near future
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