Power Corrections for Fixed-Order Subtractions

Frank Tackmann

Deutsches Elektronen-Synchrotron

NLP Workshop, Nikhef

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-43-0) 2018-11-05 0/27

Subtractions.

◆母→

Starting Point.

$$
\sigma(X) = \int d\mathcal{T}_N \, \frac{d\sigma(X)}{d\mathcal{T}_N} = \underbrace{\int^{\mathcal{T}_{\text{cut}}} d\mathcal{T}_N \, \frac{d\sigma(X)}{d\mathcal{T}_N}}_{\equiv \sigma(X, \mathcal{T}_{\text{cut}})} + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_N \frac{d\sigma(X)}{d\mathcal{T}_N}
$$

 \bullet $\sigma(X)$: generic N-jet cross section

- At LO_N: $\sigma^{\text{LO}}(X) = \int d\Phi_N B_N(\Phi_N) X(\Phi_N)$
- \blacktriangleright X: All defining Born-level measurements/cuts
- \blacktriangleright Φ_N : Born-level phase-space
- \bullet \mathcal{T}_{N} : physical IR-safe N-jet resolution variable

 $\mathcal{T}_N(\Phi_N) = 0$ $\mathcal{T}_N(\Phi_{>N+1}) > 0$ $\mathcal{T}_N(\Phi_{>N+1} \to \Phi_N) \to 0$

 \bullet d $\sigma(X)/d\mathcal{T}_N$: differential \mathcal{T}_N spectrum

• At
$$
LO_N
$$
:
$$
\frac{d\sigma^{LO}(X)}{d\mathcal{T}_N} = \sigma^{LO}(X) \, \delta(\mathcal{T}_N)
$$

 \blacktriangleright $\tau_N > 0$ defines an IR-safe physical N+1-jet cross section

∢ শী ৷

Subtractions.

Add and subtract
$$
\sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) = \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}}^{\mathcal{T}_{\text{off}}} d\mathcal{T}_{N} \frac{d\sigma^{\text{sub}}}{d\mathcal{T}_{N}}
$$

\n
$$
\sigma = \sigma(\mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma}{d\mathcal{T}_{N}}
$$
\n
$$
= \sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_{N} \left[\frac{d\sigma}{d\mathcal{T}_{N}} - \frac{d\sigma^{\text{sub}}}{d\mathcal{T}_{N}} \theta(\mathcal{T} < \mathcal{T}_{\text{off}}) \right] + \sigma(\mathcal{T}_{\text{cut}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})
$$

Subtractions $\sigma^{\rm sub}(\mathcal{T}_{\rm cut})$ and ${\rm d}\sigma^{\rm sub}/{\rm d}\mathcal{T}_N$

IF Have to reproduce leading singular limit of $\sigma(\mathcal{T}_{\text{cut}})$ and $d\sigma/d\mathcal{T}_N$ such that we can neglect $\Delta \sigma(\mathcal{T}_{\rm cut})\equiv \sigma(\mathcal{T}_{\rm cut})-\sigma^{\rm sub}(\mathcal{T}_{\rm cut})$ for $\mathcal{T}_{\rm cut}\to 0$

∢ শী ।

Subtractions.

Add and subtract
$$
\sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) = \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}}^{\mathcal{T}_{\text{off}}} d\mathcal{T}_{N} \frac{d\sigma^{\text{sub}}}{d\mathcal{T}_{N}}
$$

\n
$$
\sigma = \sigma(\mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma}{d\mathcal{T}_{N}}
$$
\n
$$
= \sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) + \int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_{N} \left[\frac{d\sigma}{d\mathcal{T}_{N}} - \frac{d\sigma^{\text{sub}}}{d\mathcal{T}_{N}} \theta(\mathcal{T} < \mathcal{T}_{\text{off}}) \right] + \sigma(\mathcal{T}_{\text{cut}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})
$$
\n
$$
= \underbrace{\sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})}_{\text{NNLO}_{N}} + \underbrace{\int_{\mathcal{T}_{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma}{d\mathcal{T}_{N}}}_{\text{NNLO}_{N+1}} + \underbrace{\sigma(\mathcal{T}_{\text{cut}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})}_{\text{neglect}}
$$

- Subtractions $\sigma^{\rm sub}(\mathcal{T}_{\rm cut})$ and ${\rm d}\sigma^{\rm sub}/{\rm d}\mathcal{T}_N$
	- **If** Have to reproduce leading singular limit of $\sigma(\mathcal{T}_{\text{cut}})$ and $d\sigma/d\mathcal{T}_{N}$ such that we can neglect $\Delta \sigma(\mathcal{T}_{\rm cut})\equiv \sigma(\mathcal{T}_{\rm cut})-\sigma^{\rm sub}(\mathcal{T}_{\rm cut})$ for $\mathcal{T}_{\rm cut}\to 0$
- \bullet \mathcal{T}_{off} is a priori arbitrary and exactly cancels
	- **Determines** \mathcal{T}_N range over which subtraction acts *differentially* in \mathcal{T}_N
	- Setting $\mathcal{T}_{\text{off}} = \mathcal{T}_{\text{cut}}$ reduces it to a global subtraction (aka slicing)

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-0-0) 2018-11-05 2/27

(伊)

Power Expansion.

Expand cross section in powers of $\tau_N \equiv \frac{\mathcal{T}_N}{\Omega}$ $\frac{\mathcal{T}_N}{Q}$ and $\tau_{\rm cut} \equiv \frac{\mathcal{T}_{\rm cut}}{Q}$ \boldsymbol{Q} (where Q is a typical hard scale whose precise choice is irrelevant for now)

> $d\sigma$ $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau_N} = \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau_N}$ $\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau_N} \hspace{0.2in} + \frac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}\tau_N}$ $\frac{{\rm d}\sigma^{(2)}}{\rm d}\tau_N \quad \quad + \frac{{\rm d}\sigma^{(4)}}{\rm d}\tau_N$ $\frac{1}{\mathrm{d} \tau_N}$ $\quad + \cdots$ $\sigma(\tau_{\rm cut})=\sigma^{(0)}(\tau_{\rm cut})+\sigma^{(2)}(\tau_{\rm cut})+\sigma^{(4)}(\tau_{\rm cut})+\cdots$

• Leading-power (singular) terms

 $\sigma^{\rm s}$

$$
\frac{d\sigma^{\rm sing}}{d\tau_N} \equiv \frac{d\sigma^{(0)}}{d\tau_N} \qquad \sim \delta(\tau_N) + \left[\frac{\ln^{n-1}\tau_N}{\tau_N}\right]_+
$$

$$
\frac{\sin(\tau_{\rm cut})}{d\tau_N} \equiv \sigma^{(0)}(\tau_{\rm cut}) \sim \ln^n \tau_{\rm cut}
$$

 \blacktriangleright Plus distributions encode real-virtual cancellation of IR singularities

• Subleading-power (nonsingular) terms

$$
\tau_N \, \frac{{\rm d}\sigma^{(2k)}}{{\rm d}\tau_N} \sim \mathcal{O}(\tau_N^k) \qquad \sigma^{(2k)}(\tau_{\rm cut}) \sim \mathcal{O}(\tau_{\rm cut}^k)
$$

Putting Everything Together[.](#page-2-0)

Subtractions have to satisfy

$$
\sigma^\mathrm{sub}(\tau_\mathrm{cut}) = \sigma^{(0)}(\tau_\mathrm{cut})\left[1+{\cal O}(\tau_\mathrm{cut})\right]
$$

such that neglecting $\Delta\sigma(\tau_{\text{cut}})$ only misses $\mathcal{O}(\tau_{\text{cut}})$ power-suppressed terms

 $\Delta \sigma (\tau_{\rm cut}) = \sigma (\tau_{\rm cut}) - \sigma^{\rm sub} (\tau_{\rm cut}) = \sigma^{(2)} (\tau_{\rm cut}) + \cdots \sim \mathcal{O} (\tau_{\rm cut})$

Tradeoff: Lowering τ_{cut} ...

- ... reduces size of missing power corrections $\Delta\sigma(\tau_{\rm{cut}})$
- ... increases numerical cancellations between first two terms
	- **E** Requires numerically more precise calculation of $d\sigma/d\tau_N$ in a region where the $N+1$ -jet NLO calculation quickly becomes much less stable
	- \triangleright Computational cost increases substantially

∢ শী ৷

Pros and Cons.

Key advantages

- All IR-singular contributions are projected onto physical observable \mathcal{T}_{N}
	- \triangleright Subtractions are given by singular limit of a physical cross section
	- \triangleright For a suitable observable can be systematically computed using a factorization theorem
	- \blacktriangleright Also allows computing power corrections, giving significant improvements
	- \triangleright Simpler structure and fewer subtraction terms
- Nonsingular contributions are immediately given in terms of existing lower-order Born+1-jet calculations

Potential drawbacks

- Subtractions are nonlocal (i.e. not point-by-point in real emission phase space)
	- **Phase-space slicing in** T_N **= global (maximally nonlocal) subtraction**
- In practice, it is a question of numerical stability whether this is a disadvantage or not
	- \triangleright Naively expect larger numerical cancellations (since they happen later)
	- \triangleright Most relevant is numerical stability of real-virtual and double-real matrix elements in deep unresolved limit which are always needed regardless of subtraction method 4 何)

In principle, any IR-sensitive resummable variable could be used

In fact, in the context of resummation, the singular terms are routinely obtained as a "by-product" of the resummation and used as subtraction to get the nonsingular terms.

Other variables used as subtractions for NNLO calculations

- Color-singlet production: q_T subtractions utilize q_T of color-singlet system [Catani, Grazzini '07]
	- \triangleright Very sucessfully applied to Higgs, Drell-Yan, and essentially any combination of diboson production [Catani et al. '07, '09, '11; Ferrera, Grazzini, Tramontano '11, '14; Cascioli et al. '14; Gehrmann et al. '14; Grazzini, Kallweit, Rathlev, Torre '13, '15; several more implementations]
	- \triangleright Primarily used as global subtraction (as far as I know)
- **Top-quark decay rate: inclusive jet mass (global)** [Gao, Li, Zhu '12]
- $e^+e^-\rightarrow t\bar{t}$: Total radiation energy (global) [Gao, Zhu '14]

4 何)

N-jettiness event shape is explicitly designed as N-jet resolution variable with simplest possible factorization/resummation properties [Stewart, FT, Waalewijn '10]

- Differential 0-jettiness subtractions are implemented in GENEVA Monte Carlo (basis of its $NNLO+NNLL'+PS$ matching) [Alioli et al. '13, '15]
- **Global 0-jettiness**
	- **Drell-Yan and Higgs [Gaunt, Stahlhofen, FT, Walsh '15]**
	- \blacktriangleright VH , diphoton [Campbell, Ellis, Li, Williams '16]
	- **NNLO color-singlet in MCFM 8 [Boughezal et al. '16]**
- **•** Global 1-jettiness
	- ▶ pp \rightarrow $V/H + j$ [Boughezal, Focke, Liu, Petriello + Campbell, Ellis, Giele '15, '16]
	- **P** $p \rightarrow \gamma + j$ [Campbell, Ellis, Williams '16]

∢ শী ।

N-Jettiness.

4 伊 ト

[N-Jettiness](#page-10-0) N-Jettiness Event Shape.

[Stewart, FT, Waalewijn, '10]

$$
\mathcal{T}_N = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_1 \cdot p_k}{Q_1}, \frac{2q_2 \cdot p_k}{Q_2}, \dots, \frac{2q_N \cdot p_k}{Q_N}\right\}
$$

$$
\equiv \mathcal{T}_N^a + \mathcal{T}_N^b + \mathcal{T}_N^1 + \dots + \mathcal{T}_N^N
$$

- Partitions phase space into N jet regions and 2 beam regions
- \bullet $Q_{a,b}, Q_j$ determine distance measure
	- Geometric measures: $Q_i = 2\rho_i E_i$
- \bullet Massless born reference momenta q_i

 $q_{a,b} = x_{a,b} \frac{E_{\mathrm{cm}}}{2}$ $\frac{1}{2} \ln (1, \pm \hat{z}), \; q_j = E_j (1, \vec{n}_j)$

Their choice corresponds to choosing an (IR-safe) Born projection

- \triangleright Does not affect leading-power structure and resummation
- ^I Part of N-jettiness definition and does affect power-suppressed terms

All-order Singular Structure[.](#page-11-0)

$$
\frac{d\sigma^{sing}(X)}{d\tau_N} = \int d\Phi_N \frac{d\sigma^{sing}(\Phi_N)}{d\tau_N} X(\Phi_N)
$$

$$
\frac{d\sigma^{sing}(\Phi_N)}{d\tau_N} = C_{-1}(\Phi_N) \delta(\tau_N) + \sum_{m \ge 0} C_m(\Phi_N) \mathcal{L}_m(\tau_N)
$$

$$
= \sum_{n \ge 0} \left[C_{-1}^{(n)}(\Phi_N) \delta(\tau_N) + \sum_{m=0}^{2n-1} C_m^{(n)}(\Phi_N) \mathcal{L}_m(\tau_N) \right] \left(\frac{\alpha_s}{4\pi} \right)^n
$$

• Singular only depend on Born phase space $\Phi_N \equiv \{q_i, \lambda_i, \kappa_i\}$

- \triangleright Subtractions are FKS-like in this respect
- Integrated subtractions

$$
\sigma^\text{sing}(\Phi_N,\tau_\text{cut}) = \mathcal{C}_{-1}(\Phi_N) + \sum_{m\geq 0} \mathcal{C}_m(\Phi_N) \, \frac{\ln^{m+1}(\tau^\text{cut})}{m+1}
$$

 \triangleright $\mathcal{C}_{-1}(\Phi_N)$ contains finite remainder of N-parton virtuals At LO: $C_{-1}^{(0)}(\Phi_N) = B_N(\Phi_N)$

∢ শী ৷

Factorization Theorem.

[Stewart, FT, Waalewijn, '09, '10]

$$
\begin{aligned} \frac{\mathrm{d}\sigma^\mathrm{sing}(\Phi_N)}{\mathrm{d}\mathcal{T}_N} &= \int \! \mathrm{d} t_a \, B_a(t_a,x_a,\mu) \int \! \mathrm{d} t_b \, B_b(t_b,x_b,\mu) \bigg[\prod_{i=1}^N \int \! \mathrm{d} s_i \, J_i(s_i,\mu) \bigg] \\ & \times \vec{C}^\dagger(\Phi_N,\mu) \, \widehat{S}_\kappa \bigg(\mathcal{T}_N - \frac{t_a}{Q_a} - \frac{t_b}{Q_b} - \sum_{i=1}^N \frac{s_i}{Q_i}, \{\hat{q}_i\},\mu \bigg) \vec{C}(\Phi_N,\mu) \end{aligned}
$$

- All functions are IR finite and have an operator definition in SCET
- To obtain subtraction coefficients simply FO expand and collect terms
- Simplifying features of N-jettiness
	- \triangleright No dependence on jet algorithm (jet clustering, jet radius, etc.)
	- \triangleright No recoil effects from soft radiation
	- \triangleright No additional \vec{p}_T dependence or convolutions, no rapidity divergences
	- Overlap between soft and collinear contributions vanishes in pure dim. reg.
	- ⇒ Become particularly useful at subleading power

4 何)

Moult, Rothen, Stewart, FT, Zhu arXiv:1612.00450, arXiv:1710.03227 Ebert, Moult, Stewart, FT, Vita, Zhu, arXiv:1807.10764

∢ শী ।

There is an important caveat

Power suppression gets weaker at higher orders in α_s **due to stronger log** enhancement

$$
\sigma^{(2)}(\tau_{\rm cut}) = \sum_{n=0} \sigma^{(2,n)}(\tau_{\rm cut}) \Big(\frac{\alpha_s}{4\pi}\Big)^n
$$

$$
\sigma^{(2,n)}(\tau_{\rm cut}) = \tau_{\rm cut} \sum_{m=0}^{2n-1} A_m^{(2,n)} \ln^m \tau_{\rm cut}
$$

 \Rightarrow Dominant missing terms at $\mathcal{O}(\alpha_s^n)$ scale as

$$
\Delta \sigma(\tau_{\rm cut}) \sim \alpha_s^n \tau_{\rm cut} \, \ln^{2n-1} \tau_{\rm cut}
$$

- Can use this to get a rough order of magnitude estimate of their size by taking $A^{(2,n)}=\sigma^{(0,n)}\times [1/3,3]$
- \triangleright Works quite well for most cases we have checked

∢ শী ।

Estimating Size of Missing [Power Corrections](#page-14-0).

Simple estimate of $\Delta\sigma(\tau_{\rm{cut}})$ at NⁿLO

 \bullet relative to full NⁿLO coefficient

Typical values in current implementations are in $\tau_{\rm cut} \simeq 10^{-5}\ldots 10^{-3}$ range

(包)

Estimating Size of Missing [Power Corrections](#page-14-0).

Simple estimate of $\Delta\sigma(\tau_{\rm{cut}})$ at NⁿLO

relative to $\sigma_{\text{\tiny{LO}}}$, assuming a 30% correction at each α_s order

Typical values in current implementations are in $\tau_{\rm cut} \simeq 10^{-5}\ldots 10^{-3}$ range

 \overline{B}

Estimating Size of Missing [Power Corrections](#page-14-0).

Simple estimate of $\Delta\sigma(\tau_{\rm{cut}})$ at NⁿLO

relative to $\sigma_{\text{\tiny{LO}}}$, assuming a 10% correction at each α_s order

Typical values in current implementations are in $\tau_{\rm cut} \simeq 10^{-5}\ldots 10^{-3}$ range

 \overline{B}

Improving the Subtractions.

[Moult, Rothen, Stewart, FT, Zhu '16, '17; Ebert, Moult, Stewart, FT, Vita, Zhu '18] [Boughezal, Liu, Petriello '16; Boughezal, Isgro, Petriello'18]

- **Each log term can potentially give an order of magnitude improvement**
	- \triangleright Even the LL next-to-leading power (NLP) terms are very interesting
- Many things that could be ignored at leading power start to matter at subleading power.
	- \triangleright Choice of N-jettiness measure, Born measurement, ...

(শী)

SCET provides manifest organization of sources of power corrections

- **•** Insertions of subleading SCET Lagrangian
	- \triangleright Corrects dynamics of propagating soft and collinear particles
- Subleading hard-scattering operators
	- \triangleright SCET helicity operator basis extended to subleading power [Feige, Kolodrubetz, Moult, Stewart; Moult, Vita, Stewart '17]
- Subleading corrections to the measurement/observable

At FO, we don't actually need a full NLP factorization theorem

- Sufficient to perform FO calculation with SCET organizing it into contributions from hard, collinear, and soft
	- **F** Typically easiest to expand the (known) full-theory amplitudes in terms of λ using soft and collinear momentum scaling
	- Easier and safer than expanding full-theory calculation directly in \mathcal{T}_{N}/Q

4 何)

Simplest Example: Sublead[in](#page-15-0)g Thrust at NLO.

$$
\frac{1}{\sigma_0}\frac{\mathrm{d}\sigma^{(2,1)}}{\mathrm{d}\tau} = 8C_F\bigg[\bigg(\frac{1}{\epsilon} + \ln\frac{\mu^2}{Q^2\tau}\bigg) - \bigg(\frac{1}{\epsilon} + \ln\frac{\mu^2}{Q^2\tau^2}\bigg)\bigg] = 8C_F\ln\tau\,,
$$

- Result gives directly (no additional expansions) the NLP contribution
- \bullet 1/ ϵ poles must cancel between collinear and soft contributions
	- \triangleright In SCET these are UV poles arising from the scale separation between different sectors
	- \triangleright From full-theory point of view these are IR poles and must cancel because there are no nontrivial IR divergences at subleading power

∢ শী ।

Simplest Example: Sublead[in](#page-15-0)g Thrust at NLO.

$$
\frac{1}{\sigma_0} \frac{d\sigma^{(2,1)}}{d\tau} = 4C_F \left[-\left(\frac{1}{\epsilon} + \ln \frac{\mu^2}{Q^2 \tau} \right) + \left(\frac{1}{\epsilon} + \ln \frac{\mu^2}{Q^2 \tau^2} \right) \right] = -4C_F \ln \tau
$$

- Result gives directly (no additional expansions) the NLP contribution
- \bullet 1/ ϵ poles must cancel between collinear and soft contributions
	- \triangleright In SCET these are UV poles arising from the scale separation between different sectors
	- \triangleright From full-theory point of view these are IR poles and must cancel because there are no nontrivial IR divergences at subleading power

 \leftarrow \oplus

Subleading Thrust at NNLO[.](#page-15-0)

Analogous cancellation of $1/\epsilon$ poles must happen at NNLO

- Yields nontrivial constraints (consistency relations) on the different contributions from hard, collinear, and soft sectors
	- \triangleright Significantly reduces number of NNLO coefficients that must be calculated
	- \blacktriangleright Equivalently provides for powerful cross checks
- The LL NNLO result is determined by a single coefficient
	- \blacktriangleright hard-collinear (easiest) or collinear-soft or soft-soft

New color structure compared to leading power from quark channel

 (5)

0-Jettiness at NLP.

In principle, we can "just" cross the thrust calculation

- Same cancellation of $1/\epsilon$ poles between different sectors and resulting consistency relations
- Quark and gluon channels turn into different incoming partonic channels

However, there are also important additional subtleties

- Dependence on Born measurement Φ_0
- Dependence on \mathcal{T}_0 definition

Treat[m](#page-15-0)ent of Born Measurement.

For subtractions, we want to be differential in Φ_0

- Consider two choices $\Phi_0 \equiv \{Q, Y\}$ and $\Phi'_0 \equiv \{q^+, q^-\}$
	- \blacktriangleright They are equivalent at Born level, and therefore at LP, but not beyond

$$
q^\mp=\sqrt{q^2+q_T^2}\,e^{\pm Y}=Q\,e^{\pm Y}\Big[1+{\cal O}(\lambda^2)\Big]
$$

 $\mathbf{r} = \frac{\mathrm{d}\sigma}{\sigma}$ $\frac{{\rm d}\sigma}{{\rm d}Q{\rm d}Y{\rm d}\mathcal{T}_0}$ and $\frac{{\rm d}\sigma}{{\rm d}q^+{\rm d}q^-{\rm d}\mathcal{T}_0}$ have *different* power corrections

At NLP, must explicitly take into account specific Born measurement

$$
Q^2 = q^2 = (p_a + p_b - k)^2, \qquad Y = \frac{1}{2} \ln \frac{q^-}{q^+} = \frac{1}{2} \ln \frac{p_a^- - k^-}{p_b^+ - k^+}
$$

 \blacktriangleright Easiest is to exactly solve Born measurement in terms of incoming momentum fractions

$$
p^\mp_{a,b}=\zeta_{a,b}E_{\mathrm{cm}}=k^\mp+e^\pm\,\sqrt{Q^2+k_T^2}
$$

Corresponds to routing soft/collinear residual momenta k into incoming parton legs. Their expansion then yields derivatives of PDFs.

∢ শী ।

LL NLP R[es](#page-15-0)ults for 0-Jettiness.

Results for coefficients of the partonic cross section

Here: $\delta_a \equiv \delta(\xi_a-x_a)$ and $\delta_a' \equiv x_a \, \delta'(\xi_a-x_a)$ and $\tau \equiv \mathcal{T}_0/Q$

LL NLO

$$
C_{q\bar{q}}^{(2,1)}(\xi_a,\xi_b) = 8C_F \left(\delta_a \delta_b + \frac{\delta'_a \delta_b}{2} + \frac{\delta_a \delta'_b}{2} \right) \ln \tau + \cdots
$$

$$
C_{qg}^{(2,1)}(\xi_a,\xi_b) = -2T_F \delta_a \delta_b \ln \tau + \cdots
$$

LL NNLO

$$
C_{q\bar{q}}^{(2,2)}(\xi_a,\xi_b) = -32C_F^2 \left(\delta_a \delta_b + \frac{\delta_a' \delta_b}{2} + \frac{\delta_a \delta_b'}{2}\right) \ln^3 \tau + \cdots
$$

 $C_{qg}^{(2,2)}(\xi_a,\xi_b) = 4 T_F (C_F + C_A) \, \delta_a \delta_b \, \ln^3 \tau + \cdots \, ,$

- ^I Channels that exist at leading power contain derivatives of PDFs at NLP
- \blacktriangleright gg channel already contributes at leading-log, in contrast to leading power

4 何)

Depe[n](#page-15-0)dence on \mathcal{T}_0 Definition.

- leptonic: $\rho_{\rm lep} = e^Y$
	- ▶ Defines $\mathcal{T}^{\text{lep}}_0$ in leptonic (Born) frame \rightarrow uniform power expansion in \mathcal{T}_0/Q

 $\blacktriangleright \mathcal{T}_0 \equiv \mathcal{T}_0^{\text{lep}}(\Phi_0) \rightarrow$ requires to be differential in Φ_0

- hadronic: $\rho_{\rm cm} = 1$
	- Defines $\mathcal{T}_0^{\mathrm{cm}}$ in hadronic cm frame \rightarrow power exp. deteriorates for large $|Y|$
	- Same effect is present for beam sectors for general \mathcal{T}_N

Frank Tackmann (DESY) **[Power Corrections for FO Subtractions](#page-0-0)** 2018-11-05 2018-11-05 20127

The slide added while you [ha](#page-15-0)d coffee.

$$
\frac{d\sigma_{q\bar{q}}^{(2,1)}}{dQ^2dYd\mathcal{T}_0^x} = \hat{\sigma}^{LO}(Q) \frac{\alpha_s C_F}{\pi}
$$
\n
$$
\times \left[f_q(x_a) f_{\bar{q}}(x_b) \left(\frac{e^Y}{Q\rho_x} \ln \frac{\mathcal{T}_0^x \rho_x}{Qe^Y} + \frac{\rho_x}{Qe^Y} \ln \frac{\mathcal{T}_0^x e^Y}{Q\rho_x} \right) \right]
$$
\n
$$
+ f'_q(x_a) f_{\bar{q}}(x_b) \frac{\rho_x}{Qe^Y} \ln \frac{\mathcal{T}_0^x e^Y}{Q\rho_x}
$$
\n
$$
+ f_q(x_a) f'_{\bar{q}}(x_b) \frac{e^Y}{Q\rho_x} \ln \frac{\mathcal{T}_0^x \rho_x}{Qe^Y} \right]
$$
\nwith\n
$$
x_a = \frac{Qe^Y}{E_{cm}}, \qquad x_b = \frac{Qe^{-Y}}{E_{cm}}
$$

- You cannot partially integrate the PDF derivatives because there is no integral when being fully differential in $\Phi_0 = \{Q, Y\}$
- At NLL, also qg channel will have $f'_q(x_a)$ and $f'_g(x_b)$

∢ শী ৷

Numerics.

4 伊 ト

We can obtain the *complete* nonsingular contributions numerically

$$
\frac{1}{\sigma_{\text{LO}}} \frac{d\sigma^{\text{nons}}}{d\ln \mathcal{T}_0} = \frac{1}{\sigma_{\text{LO}}} \frac{d\sigma}{d\ln \mathcal{T}_0} - \frac{1}{\sigma_{\text{LO}}} \frac{d\sigma^{\text{sing}}}{d\ln \mathcal{T}_0}
$$

• Use $V/H + j$ NLO₁ calculation from MCFM8 for $d\sigma/d\ln T_0$

• Perform a
$$
\chi^2
$$
 fit to (with $\tau \equiv \tau_0/m_Z$ or $\tau \equiv \tau_0/m_H$)
\n
$$
F_{\rm NLO}(\tau) = \frac{d}{d \ln \tau} \Big\{ \tau \big[(a_1 + b_1 \tau + c_1 \tau^2) \ln \tau + a_0 + b_0 \tau + c_0 \tau^2 \big] \Big\}
$$
\n
$$
F_{\rm NNLO}(\tau) = \frac{d}{d \ln \tau} \Big\{ \tau \big[(a_3 + b_3 \tau) \ln^3 \tau + (a_2 + b_2 \tau) \ln^2 \tau + a_1 \ln \tau + a_0 \Big\}
$$

- ^I Requires high MC statistics to get precise enough nonsingular data to be able to distinguish different terms of similar shape
- Important to include b_i , c_i coefficients in the fit to avoid biasing the fit result for the NLP a_i coefficients we are interested in
- Important to carefully select fit range in \mathcal{T}_0 and validate fit stability

4 何)

 $\left.\right.$ $\left.\right.$

 $d\sigma/d \ln \mathcal{T}_0$ (linear scale)

$d\sigma/d \ln \mathcal{T}_0$ (log scale)

$d\sigma/d \ln \mathcal{T}_0$ (linear scale)

$d\sigma/d \ln \mathcal{T}_0$ (log scale)

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta\sigma(\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-0-0) 2018-11-05 23 / 27

(শী)

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta\sigma(\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-0-0) 2018-11-05 23 / 27

∢ শী ।

$d\sigma/d \ln \mathcal{T}_0$ (linear scale)

$d\sigma/d \ln \mathcal{T}_0$ (log scale)

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-0-0) 2018-11-05 24 / 27

േ ⁄5ാ

$d\sigma/d \ln \mathcal{T}_0$ (linear scale)

$d\sigma/d \ln \mathcal{T}_0$ (log scale)

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-0-0) 2018-11-05 24 / 27

闹

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta\sigma(\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-0-0) 2018-11-05 24 / 27

േ ⁄5ാ

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta\sigma(\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Frank Tackmann (DESY) [Power Corrections for FO Subtractions](#page-0-0) 2018-11-05 24 / 27

േ ⁄5ാ

Higgs at NLO.

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta\sigma(\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Higgs at NLO.

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Higgs at NNLO.

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta\sigma(\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Higgs at NNLO.

$100 \Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (linear scale)

$\Delta \sigma (\tau_{\rm{cut}})/\sigma_{\rm{LO}}$ (log scale)

Key advantages of employing physical resolution variable for subtraction

- Subtractions are given by singular limit of a physical cross section
- Integrated subtractions are given by matrix elements of operators
- In principle, can recycle existing Born+1 jet calculations

Main drawback are neglected $\Delta\sigma(\tau_{\text{cut}})$ terms

- Is solved by computing and including NLP corrections
- Even the fixed-order LL terms give substantial improvement

Fixed-order are also the first step toward resumming

o to be continued in Gherardo's talk ...