Power Corrections for Fixed-Order Subtractions

Frank Tackmann

Deutsches Elektronen-Synchrotron

NLP Workshop, Nikhef

Frank Tackmann (DESY)

2018-11-05 0 / 27

Subtractions.

< 67 ►

Starting Point.

$$\sigma(X) = \int \mathrm{d}\mathcal{T}_N \, \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_N} = \underbrace{\int^{\mathcal{T}_{\mathrm{cut}}} \mathrm{d}\mathcal{T}_N \, \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_N}}_{\equiv \sigma(X, \mathcal{T}_{\mathrm{cut}})} + \int_{\mathcal{T}_{\mathrm{cut}}} \mathrm{d}\mathcal{T}_N \frac{\mathrm{d}\sigma(X)}{\mathrm{d}\mathcal{T}_N}$$

σ(X): generic N-jet cross section

- At LO_N: $\sigma^{\text{LO}}(X) = \int d\Phi_N B_N(\Phi_N) X(\Phi_N)$
- X: All defining Born-level measurements/cuts
- ▶ Φ_N: Born-level phase-space
- T_N : physical IR-safe N-jet resolution variable

 $\mathcal{T}_N(\Phi_N)=0 \qquad \mathcal{T}_N(\Phi_{\geq N+1})>0 \qquad \mathcal{T}_N(\Phi_{\geq N+1} o \Phi_N) o 0$

• $d\sigma(X)/d\mathcal{T}_N$: differential \mathcal{T}_N spectrum

- At LO_N: $\frac{\mathrm{d}\sigma^{\mathrm{LO}}(X)}{\mathrm{d}\mathcal{T}_N} = \sigma^{\mathrm{LO}}(X)\,\delta(\mathcal{T}_N)$
- $T_N > 0$ defines an IR-safe physical N+1-jet cross section

< 🗗 >

Subtractions.

Add and subtract
$$\sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{off}}) = \sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{cut}}) + \int_{\mathcal{T}_{\mathrm{cut}}}^{\mathcal{T}_{\mathrm{off}}} \mathrm{d}\mathcal{T}_{N} \frac{\mathrm{d}\sigma^{\mathrm{sub}}}{\mathrm{d}\mathcal{T}_{N}}$$

 $\sigma = \sigma(\mathcal{T}_{\mathrm{cut}}) + \int_{\mathcal{T}_{\mathrm{cut}}} \mathrm{d}\mathcal{T}_{N} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}}$
 $= \sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{off}}) + \int_{\mathcal{T}_{\mathrm{cut}}} \mathrm{d}\mathcal{T}_{N} \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}} - \frac{\mathrm{d}\sigma^{\mathrm{sub}}}{\mathrm{d}\mathcal{T}_{N}} \theta(\mathcal{T} < \mathcal{T}_{\mathrm{off}}) \right] + \sigma(\mathcal{T}_{\mathrm{cut}}) - \sigma^{\mathrm{sub}}(\mathcal{T}_{\mathrm{cut}})$

• Subtractions $\sigma^{
m sub}(\mathcal{T}_{
m cut})$ and ${
m d}\sigma^{
m sub}/{
m d}\mathcal{T}_N$

► Have to reproduce leading singular limit of $\sigma(\mathcal{T}_{cut})$ and $d\sigma/d\mathcal{T}_N$ such that we can neglect $\Delta\sigma(\mathcal{T}_{cut}) \equiv \sigma(\mathcal{T}_{cut}) - \sigma^{sub}(\mathcal{T}_{cut})$ for $\mathcal{T}_{cut} \to 0$

< 67 →

Subtractions.

$$\begin{aligned} & \text{Add and subtract} \quad \sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) = \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}}) + \int_{\mathcal{T}_{\text{cut}}}^{\mathcal{T}_{\text{off}}} \mathrm{d}\mathcal{T}_{N} \frac{\mathrm{d}\sigma^{\text{sub}}}{\mathrm{d}\mathcal{T}_{N}} \\ & \sigma = \sigma(\mathcal{T}_{\text{cut}}) \quad + \int_{\mathcal{T}_{\text{cut}}} \mathrm{d}\mathcal{T}_{N} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}} \\ & = \sigma^{\text{sub}}(\mathcal{T}_{\text{off}}) + \int_{\mathcal{T}_{\text{cut}}} \mathrm{d}\mathcal{T}_{N} \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}} - \frac{\mathrm{d}\sigma^{\text{sub}}}{\mathrm{d}\mathcal{T}_{N}} \theta(\mathcal{T} < \mathcal{T}_{\text{off}}) \right] + \sigma(\mathcal{T}_{\text{cut}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}}) \\ & = \underbrace{\sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})}_{\text{NNLO}_{N}} + \underbrace{\int_{\mathcal{T}_{\text{cut}}} \mathrm{d}\mathcal{T}_{N} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{N}}}_{\text{NLO}_{N+1}} + \underbrace{\sigma(\mathcal{T}_{\text{cut}}) - \sigma^{\text{sub}}(\mathcal{T}_{\text{cut}})}_{\text{neglect}} \end{aligned}$$

- Subtractions $\sigma^{
 m sub}(\mathcal{T}_{
 m cut})$ and ${
 m d}\sigma^{
 m sub}/{
 m d}\mathcal{T}_N$
 - ► Have to reproduce leading singular limit of $\sigma(\mathcal{T}_{cut})$ and $d\sigma/d\mathcal{T}_N$ such that we can neglect $\Delta\sigma(\mathcal{T}_{cut}) \equiv \sigma(\mathcal{T}_{cut}) \sigma^{sub}(\mathcal{T}_{cut})$ for $\mathcal{T}_{cut} \to 0$
- $\mathcal{T}_{\mathrm{off}}$ is a priori arbitrary and exactly cancels
 - Determines \mathcal{T}_N range over which subtraction acts differentially in \mathcal{T}_N
 - Setting $\mathcal{T}_{off} = \mathcal{T}_{cut}$ reduces it to a global subtraction (aka slicing)

Frank Tackmann (DESY)

Power Corrections for FO Subtractions

< 🗇 >

Power Expansion.

Expand cross section in powers of $\tau_N \equiv \frac{\mathcal{T}_N}{Q}$ and $\tau_{\text{cut}} \equiv \frac{\mathcal{T}_{\text{cut}}}{Q}$ (where Q is a typical hard scale whose precise choice is irrelevant for now)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau_N} = \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau_N} + \frac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}\tau_N} + \frac{\mathrm{d}\sigma^{(4)}}{\mathrm{d}\tau_N} + \cdots$$
$$\sigma(\tau_{\mathrm{cut}}) = \sigma^{(0)}(\tau_{\mathrm{cut}}) + \sigma^{(2)}(\tau_{\mathrm{cut}}) + \sigma^{(4)}(\tau_{\mathrm{cut}}) + \cdots$$

Leading-power (singular) terms

 σ^{i}

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}\tau_N} \equiv rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau_N} \sim \delta(\tau_N) + \left[rac{\mathrm{ln}^{n-1}\,\tau_N}{ au_N}
ight]_+$$
 $^{\mathrm{sing}}(au_{\mathrm{cut}}) \equiv \sigma^{(0)}(au_{\mathrm{cut}}) \sim \mathrm{ln}^n\, au_{\mathrm{cut}}$

Plus distributions encode real-virtual cancellation of IR singularities

Subleading-power (nonsingular) terms

$$au_N \, rac{\mathrm{d} \sigma^{(2k)}}{\mathrm{d} au_N} \sim \mathcal{O}(au_N^k) \qquad \sigma^{(2k)}(au_\mathrm{cut}) \sim \mathcal{O}(au_\mathrm{cut}^k)$$

Frank Tackmann (DESY)

Putting Everything Together.

Subtractions have to satisfy

$$\sigma^{
m sub}(au_{
m cut}) = \sigma^{(0)}(au_{
m cut}) \left[1 + \mathcal{O}(au_{
m cut})
ight]$$

such that neglecting $\Delta \sigma(\tau_{\rm cut})$ only misses $\mathcal{O}(\tau_{\rm cut})$ power-suppressed terms

 $\Delta \sigma(\tau_{\rm cut}) = \sigma(\tau_{\rm cut}) - \sigma^{
m sub}(\tau_{
m cut}) = \sigma^{(2)}(\tau_{
m cut}) + \cdots \sim \mathcal{O}(\tau_{
m cut})$

Tradeoff: Lowering au_{cut} ...

- ... reduces size of missing power corrections $\Delta \sigma(au_{
 m cut})$
- ... increases numerical cancellations between first two terms
 - Requires numerically more precise calculation of dσ/dτ_N in a region where the N+1-jet NLO calculation quickly becomes much less stable
 - Computational cost increases substantially

< 67 →

Pros and Cons.

Key advantages

- All IR-singular contributions are projected onto physical observable \mathcal{T}_N
 - Subtractions are given by singular limit of a physical cross section
 - For a suitable observable can be systematically computed using a factorization theorem
 - Also allows computing power corrections, giving significant improvements
 - Simpler structure and fewer subtraction terms
- Nonsingular contributions are immediately given in terms of existing lower-order Born+1-jet calculations

Potential drawbacks

- Subtractions are nonlocal (i.e. not point-by-point in real emission phase space)
 - ▶ Phase-space slicing in T_N = global (maximally nonlocal) subtraction
- In practice, it is a question of numerical stability whether this is a disadvantage or not
 - Naively expect larger numerical cancellations (since they happen later)
 - Most relevant is numerical stability of real-virtual and double-real matrix elements in deep unresolved limit which are always needed regardless of subtraction method

In principle, any IR-sensitive resummable variable could be used

In fact, in the context of resummation, the singular terms are routinely obtained as a "by-product" of the resummation and used as subtraction to get the nonsingular terms.

Other variables used as subtractions for NNLO calculations

- Color-singlet production: q_T subtractions utilize q_T of color-singlet system [Catani, Grazzini '07]
 - Very successfully applied to Higgs, Drell-Yan, and essentially any combination of diboson production [Catani et al. '07, '09, '11; Ferrera, Grazzini, Tramontano '11, '14; Cascioli et al. '14; Gehrmann et al. '14; Grazzini, Kallweit, Rathlev, Torre '13, '15; several more implementations]
 - Primarily used as global subtraction (as far as I know)
- Top-quark decay rate: inclusive jet mass (global) [Gao, Li, Zhu '12]
- $ullet e^+e^- o tar t$: Total radiation energy (global) [Gao, Zhu '14]

N-jettiness event shape is explicitly designed as N-jet resolution variable with simplest possible factorization/resummation properties [Stewart, FT, Waalewijn '10]

- Differential 0-jettiness subtractions are implemented in GENEVA Monte Carlo (basis of its NNLO+NNLL'+PS matching) [Alioli et al. '13, '15]
- Global 0-jettiness
 - Drell-Yan and Higgs [Gaunt, Stahlhofen, FT, Walsh '15]
 - VH, diphoton [Campbell, Ellis, Li, Williams '16]
 - NNLO color-singlet in MCFM 8 [Boughezal et al. '16]
- Global 1-jettiness
 - ▶ $pp \rightarrow V/H + j$ [Boughezal, Focke, Liu, Petriello + Campbell, Ellis, Giele '15, '16]
 - $\blacktriangleright pp
 ightarrow \gamma + j$ [Campbell, Ellis, Williams '16]

N-Jettiness.

< 🗗 >

N-Jettiness Event Shape.

[Stewart, FT, Waalewijn, '10]

$$egin{split} \mathcal{T}_N &= \sum_k \miniggl\{rac{2q_a \cdot p_k}{Q_a}, rac{2q_b \cdot p_k}{Q_b}, rac{2q_1 \cdot p_k}{Q_1}, rac{2q_2 \cdot p_k}{Q_2}, \dots, rac{2q_N \cdot p_k}{Q_N}iggr\} \ &\equiv \mathcal{T}_N^a + \mathcal{T}_N^b + \mathcal{T}_N^1 + \dots + \mathcal{T}_N^N \end{split}$$

- Partitions phase space into
 N jet regions and 2 beam regions
- $Q_{a,b}, Q_j$ determine distance measure
 - Geometric measures: $Q_i = 2\rho_i E_i$
- Massless born reference momenta q_i

 $q_{a,b} = x_{a,b} rac{E_{
m cm}}{2}(1,\pm \hat{z})\,, \; q_j = E_j(1,ec{n}_j)$

Their choice corresponds to choosing an (IR-safe) Born projection

- Does not affect leading-power structure and resummation
- Part of N-jettiness definition and does affect power-suppressed terms

All-order Singular Structure.

$$\begin{split} \frac{\mathrm{d}\sigma^{\mathrm{sing}}(X)}{\mathrm{d}\tau_N} &= \int \mathrm{d}\Phi_N \ \frac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d}\tau_N} X(\Phi_N) \\ \frac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d}\tau_N} &= \qquad \mathcal{C}_{-1}(\Phi_N) \,\delta(\tau_N) \ + \ \sum_{m\geq 0} \ \mathcal{C}_m(\Phi_N) \,\mathcal{L}_m(\tau_N) \\ &= \sum_{n\geq 0} \Big[\mathcal{C}_{-1}^{(n)}(\Phi_N) \,\delta(\tau_N) \ + \ \sum_{m=0}^{2n-1} \mathcal{C}_m^{(n)}(\Phi_N) \,\mathcal{L}_m(\tau_N) \Big] \Big(\frac{\alpha_s}{4\pi}\Big)^n \end{split}$$

• Singular only depend on Born phase space $\Phi_N \equiv \{q_i, \lambda_i, \kappa_i\}$

- Subtractions are FKS-like in this respect
- Integrated subtractions

$$\sigma^{\mathrm{sing}}(\Phi_N, au_{\mathrm{cut}}) = \mathcal{C}_{-1}(\Phi_N) + \sum_{m \ge 0} \mathcal{C}_m(\Phi_N) \, rac{\ln^{m+1}(au^{\mathrm{cut}})}{m+1}$$

C₋₁(Φ_N) contains finite remainder of N-parton virtuals
 At LO: C⁽⁰⁾₋₁(Φ_N) = B_N(Φ_N)

< 67 →

1.4

Factorization Theorem.

[Stewart, FT, Waalewijn, '09, '10]

$$egin{aligned} rac{\mathrm{d}\sigma^{\mathrm{sing}}(\Phi_N)}{\mathrm{d}\mathcal{T}_N} &= \int\!\mathrm{d}t_a\,B_a(t_a,x_a,\mu)\int\!\mathrm{d}t_b\,B_b(t_b,x_b,\mu)igg[\prod_{i=1}^N\int\!\mathrm{d}s_i\,J_i(s_i,\mu)igg] \ & imesec{C}^\dagger(\Phi_N,\mu)\,\widehat{S}_\kappaigg(\mathcal{T}_N-rac{t_a}{Q_a}-rac{t_b}{Q_b}-\sum_{i=1}^Nrac{s_i}{Q_i},\{\hat{q}_i\},\muigg)ec{C}(\Phi_N,\mu) \end{aligned}$$

- All functions are IR finite and have an operator definition in SCET
- To obtain subtraction coefficients simply FO expand and collect terms
- Simplifying features of N-jettiness
 - ▶ No dependence on jet algorithm (jet clustering, jet radius, etc.)
 - No recoil effects from soft radiation
 - No additional \vec{p}_T dependence or convolutions, no rapidity divergences
 - Overlap between soft and collinear contributions vanishes in pure dim. reg.
 - ⇒ Become particularly useful at subleading power

Moult, Rothen, Stewart, FT, Zhu arXiv:1612.00450, arXiv:1710.03227 Ebert, Moult, Stewart, FT, Vita, Zhu, arXiv:1807.10764

There is an important caveat

 Power suppression gets weaker at higher orders in α_s due to stronger log enhancement

$$\sigma^{(2)}(au_{ ext{cut}}) = \sum_{n=0} \sigma^{(2,n)}(au_{ ext{cut}}) \Big(rac{lpha_s}{4\pi}\Big)^n$$

$$\sigma^{(2,n)}(au_{ ext{cut}}) = au_{ ext{cut}} \sum_{m=0}^{2n-1} A_m^{(2,n)} \ln^m au_{ ext{cut}}$$

 \Rightarrow Dominant missing terms at $\mathcal{O}(\alpha_s^n)$ scale as

$$\Delta\sigma(au_{
m cut})\sim lpha_s^n\, au_{
m cut}\,\ln^{2n-1} au_{
m cut}$$

- ► Can use this to get a rough order of magnitude estimate of their size by taking $A^{(2,n)} = \sigma^{(0,n)} \times [1/3,3]$
- Works quite well for most cases we have checked

Frank Tackmann (DESY)

Estimating Size of Missing Power Corrections.

Simple estimate of $\Delta\sigma(au_{
m cut})$ at N n LO

• relative to full NⁿLO coefficient

Typical values in current implementations are in $au_{
m cut}\simeq 10^{-5}\dots 10^{-3}$ range

Frank Tackmann (DESY)

< 🗗 >

Estimating Size of Missing Power Corrections.

Simple estimate of $\Delta\sigma(au_{
m cut})$ at N n LO

• relative to $\sigma_{\rm LO}$, assuming a 30% correction at each α_s order

Typical values in current implementations are in $au_{
m cut}\simeq 10^{-5}\dots 10^{-3}$ range

< 🗗 >

Estimating Size of Missing Power Corrections.

Simple estimate of $\Delta\sigma(au_{
m cut})$ at N n LO

• relative to σ_{LO} , assuming a 10% correction at each α_s order

Typical values in current implementations are in $au_{
m cut}\simeq 10^{-5}\dots 10^{-3}$ range

Frank Tackmann (DESY)

< 🗇 >

Improving the Subtractions.

[Moult, Rothen, Stewart, FT, Zhu '16, '17; Ebert, Moult, Stewart, FT, Vita, Zhu '18] [Boughezal, Liu, Petriello '16; Boughezal, Isgro, Petriello'18]

- Each log term can potentially give an order of magnitude improvement
 - Even the LL next-to-leading power (NLP) terms are very interesting
- Many things that could be ignored at leading power start to matter at subleading power.
 - Choice of N-jettiness measure, Born measurement, ...

< 行り)

SCET provides manifest organization of sources of power corrections

- Insertions of subleading SCET Lagrangian
 - Corrects dynamics of propagating soft and collinear particles
- Subleading hard-scattering operators
 - SCET helicity operator basis extended to subleading power [Feige, Kolodrubetz, Moult, Stewart; Moult, Vita, Stewart '17]
- Subleading corrections to the measurement/observable

At FO, we don't actually need a full NLP factorization theorem

- Sufficient to perform FO calculation with SCET organizing it into contributions from hard, collinear, and soft
 - Typically easiest to expand the (known) full-theory amplitudes in terms of λ using soft and collinear momentum scaling
 - Easier and safer than expanding full-theory calculation directly in \mathcal{T}_N/Q

Simplest Example: Subleading Thrust at NLO.

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma^{(2,1)}}{\mathrm{d}\tau} = 8 C_F \bigg[\bigg(\frac{1}{\epsilon} + \ln \frac{\mu^2}{Q^2 \tau} \bigg) - \bigg(\frac{1}{\epsilon} + \ln \frac{\mu^2}{Q^2 \tau^2} \bigg) \bigg] = 8 C_F \ln \tau \,,$$

- Result gives directly (no additional expansions) the NLP contribution
- $1/\epsilon$ poles must cancel between collinear and soft contributions
 - In SCET these are UV poles arising from the scale separation between different sectors
 - From full-theory point of view these are IR poles and must cancel because there are no nontrivial IR divergences at subleading power

< 67 →

Simplest Example: Subleading Thrust at NLO.

$$\frac{1}{\sigma_0}\frac{\mathrm{d}\sigma^{(2,1)}}{\mathrm{d}\tau} = 4C_F \left[-\left(\frac{1}{\epsilon} + \ln\frac{\mu^2}{Q^2\tau}\right) + \left(\frac{1}{\epsilon} + \ln\frac{\mu^2}{Q^2\tau^2}\right) \right] = -4C_F \ln\tau$$

- Result gives directly (no additional expansions) the NLP contribution
- $1/\epsilon$ poles must cancel between collinear and soft contributions
 - In SCET these are UV poles arising from the scale separation between different sectors
 - From full-theory point of view these are IR poles and must cancel because there are no nontrivial IR divergences at subleading power

< 67 →

Subleading Thrust at NNLO.

Analogous cancellation of $1/\epsilon$ poles must happen at NNLO

- Yields nontrivial constraints (consistency relations) on the different contributions from hard, collinear, and soft sectors
 - Significantly reduces number of NNLO coefficients that must be calculated
 - Equivalently provides for powerful cross checks
- The LL NNLO result is determined by a single coefficient
 - hard-collinear (easiest) or collinear-soft or soft-soft

New color structure compared to leading power from quark channel

In principle, we can "just" cross the thrust calculation

- Same cancellation of $1/\epsilon$ poles between different sectors and resulting consistency relations
- Quark and gluon channels turn into different incoming partonic channels

However, there are also important additional subtleties

- Dependence on Born measurement Φ_0
- Dependence on T₀ definition

Treatment of Born Measurement.

For subtractions, we want to be differential in Φ_0

- Consider two choices $\Phi_0 \equiv \{Q,Y\}$ and $\Phi_0' \equiv \{q^+,q^-\}$
 - They are equivalent at Born level, and therefore at LP, but not beyond

$$q^{\mp} = \sqrt{q^2 + q_T^2} \, e^{\pm Y} = Q \, e^{\pm Y} \Big[1 + \mathcal{O}(\lambda^2) \Big]$$

• $\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}\mathcal{T}_0}$ and $\frac{\mathrm{d}\sigma}{\mathrm{d}q^+\mathrm{d}q^-\mathrm{d}\mathcal{T}_0}$ have *different* power corrections

At NLP, must explicitly take into account specific Born measurement

$$Q^2 = q^2 = (p_a + p_b - k)^2 \,, \qquad Y = rac{1}{2} \ln rac{q^-}{q^+} = rac{1}{2} \ln rac{p_a^- - k^-}{p_b^+ - k^+}$$

 Easiest is to exactly solve Born measurement in terms of incoming momentum fractions

$$p^{\mp}_{a,b}=\zeta_{a,b}E_{ ext{cm}}=k^{\mp}+e^{\pm}\sqrt{Q^2+k_T^2}$$

Corresponds to routing soft/collinear residual momenta k into incoming parton legs. Their expansion then yields derivatives of PDFs.

Frank Tackmann (DESY)

LL NLP Results for 0-Jettiness.

Results for coefficients of the partonic cross section

Here: $\delta_a\equiv\delta(\xi_a-x_a)$ and $\delta_a'\equiv x_a\,\delta'(\xi_a-x_a)$ and $\tau\equiv\mathcal{T}_0/Q$

LL NLO

$$egin{aligned} C_{qar q}^{(2,1)}(\xi_a,\xi_b) &= 8 C_F \left(\delta_a \delta_b + rac{\delta_a' \delta_b}{2} + rac{\delta_a \delta_b'}{2}
ight) \ln au + \cdots \ C_{qq}^{(2,1)}(\xi_a,\xi_b) &= -2 T_F \, \delta_a \delta_b \, \ln au + \cdots \end{aligned}$$

LL NNLO

$$egin{aligned} C_{qar{q}}^{(2,2)}(\xi_a,\xi_b) &= -32C_F^2\left(\delta_a\delta_b+rac{\delta_a'\delta_b}{2}+rac{\delta_a\delta_b'}{2}
ight)\ln^3 au+\cdots \ C_{qg}^{(2,2)}(\xi_a,\xi_b) &= 4T_F(C_F+C_A)\,\delta_a\delta_b\,\ln^3 au+\cdots \end{aligned}$$

- Channels that exist at leading power contain derivatives of PDFs at NLP
- qg channel already contributes at leading-log, in contrast to leading power

Frank Tackmann (DESY)

Power Corrections for FO Subtractions

< 🗇 >

Dependence on \mathcal{T}_0 Definition.

- leptonic: $ho_{
 m lep} = e^Y$
 - Defines $\mathcal{T}_0^{\mathrm{lep}}$ in leptonic (Born) frame \rightarrow uniform power expansion in \mathcal{T}_0/Q

• $\mathcal{T}_0 \equiv \mathcal{T}_0^{\text{lep}}(\Phi_0) \rightarrow$ requires to be differential in Φ_0

- hadronic: $\rho_{\rm cm} = 1$
 - Defines \mathcal{T}_0^{cm} in hadronic cm frame \rightarrow power exp. deteriorates for large |Y|
 - Same effect is present for beam sectors for general T_N

Frank Tackmann (DESY)

Power Corrections for FO Subtractions

(A))

The slide added while you had coffee.

$$\begin{split} \frac{\mathrm{d}\sigma_{q\bar{q}}^{(2,1)}}{\mathrm{d}Q^2\mathrm{d}Y\mathrm{d}\mathcal{T}_0^x} &= \hat{\sigma}^{\mathrm{LO}}(Q) \, \frac{\alpha_s C_F}{\pi} \\ &\times \left[f_q(x_a) f_{\bar{q}}(x_b) \left(\frac{e^Y}{Q\rho_x} \, \ln \frac{\mathcal{T}_0^x \rho_x}{Qe^Y} + \frac{\rho_x}{Qe^Y} \, \ln \frac{\mathcal{T}_0^x e^Y}{Q\rho_x} \right) \right. \\ &+ f_q'(x_a) f_{\bar{q}}(x_b) \, \frac{\rho_x}{Qe^Y} \, \ln \frac{\mathcal{T}_0^x e^Y}{Q\rho_x} \\ &+ f_q(x_a) f_{\bar{q}}'(x_b) \, \frac{e^Y}{Q\rho_x} \, \ln \frac{\mathcal{T}_0^x \rho_x}{Qe^Y} \right] \\ \text{with} \quad x_a = \frac{Qe^Y}{E_{\mathrm{cm}}} \,, \qquad x_b = \frac{Qe^{-Y}}{E_{\mathrm{cm}}} \end{split}$$

- You cannot partially integrate the PDF derivatives because there is no integral when being fully differential in $\Phi_0 = \{Q, Y\}$
- At NLL, also qg channel will have $f'_q(x_a)$ and $f'_q(x_b)$

Frank Tackmann (DESY)

< 67 →

Numerics.

< 🗗 >

We can obtain the complete nonsingular contributions numerically

$$\frac{1}{\sigma_{\rm LO}} \frac{\mathrm{d}\sigma^{\rm nons}}{\mathrm{d}\ln\mathcal{T}_0} = \frac{1}{\sigma_{\rm LO}} \frac{\mathrm{d}\sigma}{\mathrm{d}\ln\mathcal{T}_0} - \frac{1}{\sigma_{\rm LO}} \frac{\mathrm{d}\sigma^{\rm sing}}{\mathrm{d}\ln\mathcal{T}_0}$$

• Use V/H + j NLO $_1$ calculation from MCFM8 for $\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$

• Perform a
$$\chi^2$$
 fit to (with $au\equiv\mathcal{T}_0/m_Z$ or $au\equiv\mathcal{T}_0/m_H$)

$$\begin{split} F_{\rm NLO}(\tau) &= \frac{\mathrm{d}}{\mathrm{d}\ln\tau} \Big\{ \tau \big[(a_1 + b_1\tau + c_1\tau^2) \ln\tau + a_0 + b_0\tau + c_0\tau^2 \big] \Big\} \\ F_{\rm NNLO}(\tau) &= \frac{\mathrm{d}}{\mathrm{d}\ln\tau} \Big\{ \tau \big[(a_3 + b_3\tau) \ln^3\tau + (a_2 + b_2\tau) \ln^2\tau + a_1 \ln\tau + a_0 \big] \Big\} \end{split}$$

- Requires high MC statistics to get precise enough nonsingular data to be able to distinguish different terms of similar shape
- Important to include b_i, c_i coefficients in the fit to avoid biasing the fit result for the NLP a_i coefficients we are interested in
- Important to carefully select fit range in \mathcal{T}_0 and validate fit stability

< 67 >

 $\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (linear scale)

 $\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (log scale)

NLO	a_1 (LL)	<i>a</i> ₀ (NLL)
$qar{q} o Zg$ fitted	$+0.25366\pm 0.00131$	$+0.13738\pm 0.00057$
calculated	+0.25509	+0.13708
qg ightarrow Zq fitted	-0.27697 ± 0.00113	-0.40062 ± 0.00052
calculated	-0.27720	-0.40104

Frank Tackmann (DESY)

2018-11-05 23 / 27

< 行り)

$\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (linear scale)

$\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (log scale)

NLO	a_1 (LL)	<i>a</i> ₀ (NLL)
$qar{q} o Zg$ fitted	$+0.25366\pm 0.00131$	$+0.13738\pm 0.00057$
calculated	+0.25509	+0.13708
qg ightarrow Zq fitted	-0.27697 ± 0.00113	-0.40062 ± 0.00052
calculated	-0.27720	-0.40104

Frank Tackmann (DESY)

2018-11-05 23 / 27

< 行り)

$100 \, \Delta \sigma(au_{ m cut}) / \sigma_{ m LO}$ (linear scale)

$\Delta\sigma(au_{ m cut})/\sigma_{ m LO}$ (log scale)

NLO	a_1 (LL)	a_0 (NLL)
$qar{q} o Zg$ fitted	$+0.25366\pm 0.00131$	$+0.13738\pm 0.00057$
calculated	+0.25509	+0.13708
qg ightarrow Zq fitted	-0.27697 ± 0.00113	-0.40062 ± 0.00052
calculated	-0.27720	-0.40104

Frank Tackmann (DESY)

2018-11-05 23 / 2

< (7)

$100\,\Delta\sigma(au_{ m cut})/\sigma_{ m LO}$ (linear scale)

$\Delta\sigma(au_{ m cut})/\sigma_{ m LO}$ (log scale)

NLO	a_1 (LL)	a_0 (NLL)
$qar{q} o Zg$ fitted	$+0.25366\pm 0.00131$	$+0.13738\pm 0.00057$
calculated	+0.25509	+0.13708
qg ightarrow Zq fitted	-0.27697 ± 0.00113	-0.40062 ± 0.00052
calculated	-0.27720	-0.40104

Frank Tackmann (DESY)

2018-11-05 23 / 27

< (7)

 $\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (linear scale)

 $\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (log scale)

NNLO	a_3 (LL)	a_2 (NLL)
$qar{q} o Zg$ fitted	-0.01112 ± 0.00150	-0.04662 ± 0.00180
calculated	-0.01277	
qg ightarrow Zq fitted	$+0.02373\pm0.00247$	$+0.04234\pm0.00242$
calculated	+0.02256	

Frank Tackmann (DESY)

2018-11-05 24 / 27

$\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (linear scale)

$\mathrm{d}\sigma/\mathrm{d}\ln\mathcal{T}_0$ (log scale)

NNLO	a_3 (LL)	a_2 (NLL)
$qar{q} o Zg$ fitted	-0.01112 ± 0.00150	-0.04662 ± 0.00180
calculated	-0.01277	
qg ightarrow Zq fitted	$+0.02373\pm0.00247$	$+0.04234\pm0.00242$
calculated	+0.02256	

Frank Tackmann (DESY)

2018-11-05 24 / 27

 $\Delta\sigma(au_{
m cut})/\sigma_{
m LO}$ (log scale)

NNLO	a_3 (LL)	a_2 (NLL)
$qar{q} o Zg$ fitted	-0.01112 ± 0.00150	-0.04662 ± 0.00180
calculated	-0.01277	
qg ightarrow Zq fitted	$+0.02373 \pm 0.00247$	$+0.04234\pm0.00242$
calculated	+0.02256	

Frank Tackmann (DESY)

2018-11-05 24 / 22

< 🗇 >

 $\Delta\sigma(au_{
m cut})/\sigma_{
m LO}$ (log scale)

NNLO	a_3 (LL)	a_2 (NLL)
$qar{q} o Zg$ fitted	-0.01112 ± 0.00150	-0.04662 ± 0.00180
calculated	-0.01277	
qg ightarrow Zq fitted	$+0.02373\pm0.00247$	$+0.04234\pm0.00242$
calculated	+0.02256	

Frank Tackmann (DESY)

2018-11-05 24 / 2

< 🗇 >

Higgs at NLO.

$100\,\Delta\sigma(au_{ m cut})/\sigma_{ m LO}$ (linear scale)

Higgs at NLO.

$100\,\Delta\sigma(au_{ m cut})/\sigma_{ m LO}$ (linear scale)

Higgs at NNLO.

$100 \, \Delta \sigma(au_{ m cut}) / \sigma_{ m LO}$ (linear scale)

Higgs at NNLO.

$100 \, \Delta \sigma(au_{ m cut}) / \sigma_{ m LO}$ (linear scale)

Key advantages of employing physical resolution variable for subtraction

- Subtractions are given by singular limit of a physical cross section
- Integrated subtractions are given by matrix elements of operators
- In principle, can recycle existing Born+1 jet calculations

Main drawback are neglected $\Delta\sigma(au_{ m cut})$ terms

- Is solved by computing and including NLP corrections
- Even the fixed-order LL terms give substantial improvement

Fixed-order are also the first step toward resumming

to be continued in Gherardo's talk ...