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Overview

Introduction to threshold logarithms.

Drell-Yan production: why is it useful?

Next-to-leading power (NLP) threshold logs up to N3LO.

Relation to NLP factorisation.
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General structure of threshold corrections

If ξ is a kinematic variable that is zero at threshold for some
process:

dσ

dξ
=
∑
n,m

αn

[
c

(0)
nm

(
lnm ξ

ξ

)
+

+ c
(1)
nm lnm ξ + . . .

]
.

First set of terms correspond to (leading) threshold logs: pure
soft and / or collinear.

Second set of terms is next-to-leading power (NLP) threshold
logs: next-to-soft and / or collinear.

As ξ → 0, must sum these terms to all orders in perturbation
theory (resummation) to get sensible results.
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Why study threshold effects?

There are many (hundreds?) of observables for which LP
resummation is important.

NLP effects can be numerically sizeable e.g. Higgs production
(Kramer, Laenen, Spira; Herzog; Mistlberger).

There are three main uses of NLP threshold effects:
1 Resummation may be necessary close to threshold.
2 Can be used to obtain (good) approximate higher order

cross-sections.
3 Can improve numerical convergence / stability of fixed-order

cross-section codes (e.g. NLO, NNLO).

Precision LHC data makes this increasingly relevant!
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Drell-Yan production

Drell-Yan production has been a traditional testing ground for
resummation ideas.

Q

p

p
_

Let z = Q2/s be the fraction of
(squared) energy s carried by
the vector boson.

At threshold, ξ ≡ (1− z)→ 1.

For threshold logs, real radiation must be (next-to-) soft.

No final state collinear radiation, thus a simpler playground
for threshold effects.
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Drell-Yan: rough state of the art

Differential cross-section in z known at NLO in 1979
(Altarelli, Ellis, Martinelli), and NNLO in 1991 (Hamberg, van
Neerven, Matsuura).

More differential quantities also calculated in 2000s (e.g.
Anastasiou, Dixon, Melnikov, Petriello).

LP logs resummed up to next-to-next-to-leading logarithmic
(NNLL) order using a variety of methods (1980s-2010s).

Small z resummation also known at NLL order, 2008
(Marzani, Ball).

NLP logs (conjecturally) resummed up to NLL using physical
evolution kernels, 2009 (Moch, Vogt).

NLP logs at LL resummed using Soft Collinear Effective
Theory (SCET), 2018 (Beneke, Broggio, Garny, Jaskiewicz,
Szafron, Vernazza, Wang).
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Drell-Yan: Beyond state of the art

Higher precision in DY is needed for precision SM tests and
background modelling.

Threshold corrections are particularly important (e.g. W and
Z mass measurements).

This motivates the calculation of (N)LP threshold
contributions at N3LO:

1 Threshold corrections are a precursor to a full N3LO
calculation.

2 They can be used to test existing conjectures about NLP logs.
3 They can be used to formulate new conjectures / theorems

about NLP logs.

In a given process at fixed order in αs , we can use the method
of regions to classify all threshold effects (Beneke, Smirnov,
Pak, Jantzen).
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Method of Regions

Let us focus on the 1-loop, 2-real contribution to DY
production at N3LO.
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p
_
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k

We can use a Sudakov
decomposition for the loop
momentum k .

Introduce n+, n− via

pν =

√
ŝ

2
nµ+, p̄µ =

√
ŝ

2
nµ−.

Then write

kµ =
(n− · k)

2
nµ+︸ ︷︷ ︸

k+

+
(n+ · k)

2
nµ−︸ ︷︷ ︸

k−

+kµ⊥

Here k⊥ = (0, k⊥, 0) is transverse to p and p̄ i.e. k⊥ · n± = 0.
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Method of Regions

One may introduce a book-keeping parameter λ ∼ (1− z)
that keeps track of which components of kµ are small.

Then the singular regions of the loop momentum (k)
integration can be phrased in terms of (k+, k⊥, k−):

Hard : k ∼
√
ŝ (1, 1, 1) ; Soft : k ∼

√
ŝ
(
λ2, λ2, λ2

)
;

Collinear : k ∼
√
ŝ
(
1, λ, λ2

)
; Anticollinear : k ∼

√
ŝ
(
λ2, λ, 1

)
.

These are the only relevant regions for (inclusive) threshold
production.

Expansion of the loop integrand in λ amounts to LP, NLP. . .
logs in the final result for the cross-section.
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Method of Regions: a subtlety

Loop integrals are invariant under shifts of the loop
momentum:

kµ → kµ +
∑
i

αip
µ
i .

This invariance is broken by the expansion in λ.

Singular regions correspond to poles in propagators.

For some choices of k, these poles do not straightforwardly
correspond to the scaling behaviours of k outlined before.

One may näıvely “miss” regions, so that care is needed.

Discussed already by Beneke & Smirnov; for an explicit
example in DY, see arXiv:1807.09246 (Bahjat-Abbas,
Sinninghe Damsté, Vernazza, White).
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Method of Regions: another subtlety

We use dimensional regularisation in d = 4− 2ε dimensions.

One then finds that the hard region has poles in ε, whereas
similar contributions to the soft region vanish.

However, the λ expansion in the soft region introduces
spurious UV poles.

Introducing counterterms would shift the singular contribution
from the hard to the soft region.

Then the hard region is IR finite, and the soft region IR
singular, as we would expect.

Instead we can choose not to, so that the hard region remains
singular...

Singular stuff in the hard region is soft stuff in disguise!
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Application to DY production

Now let us return to the 1-virtual, 2-real contributions to DY.

We will further restrict to abelian-like contributions, with a
colour factor ∼ C 3

F .

Feynman diagrams for the amplitude were generated with
QGRAF (Nogueira), and reduced to scalar integrals using
Reduze (von Manteuffel, Studerus).

Method of regions applied to each scalar integral, using Asy

to cross-check (Jantzen, Pak, Smirnov2).

Contribution to the cross-section is through the interference
term

M =

∫
ddk

(2π)d
A2r,1vA†2r .

Two independent calculations, with full agreement.
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Phase space integration

For the cross-section, we must integrate the squared matrix
element over the phase space:

dσ

dz
∼
∫

dΦ(3)δ

(
z − Q2

s

)
M.

To discuss the results, it is useful to define some invariants:

t2,3 = (p − k1,2)2, u2,3 = (p̄ − k1,2)2, s12 = 2k1 · k2.

The squared matrix elements in each region have a relatively
compact form...

...although the integrals over the phase space are extremely
challenging!
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Hard and collinear regions

Squared matrix elements in hard / collinear regions:

MLP
hard = N

µ2
MS

−s

ε fH1 s3

t2 t3 u2 u3

, N = 128πα3
s (1− ε)C3

F e
2
qNc ;

MNLP
hard = N

µ2
MS

−s

ε s2(t2 + t3 + u2 + u3)

t2 t3 u2 u3

[
fH2 +

1

2

t2 u3 + t3 u2 − s12 s

(t2 + t3)(u2 + u3)
fH1

]
;

MLP
col. = 0;

MNLP
col. = N (µ2

MS
)ε

s2

t2t3u2u3

{[
u2(−t2)−ε + u3(−t3)−ε

]
fC1

+
t3u2 + t2u3 − s12s

t2 + t3

[(
(−t2)−ε − 2(−t2 − t3)−ε + (−t3)−ε

)
fC2

−
(

t2

t3
(−t2)−ε −

(t2
2 + t2

3 )

t2t3
(−t2 − t3)−ε +

t3

t2
(−t3)ε

)
fC3

]}
.

Each f Xi is a Laurent series in ε, with constant coefficients.

Full results in arXiv:1807.09246 (Bahjat-Abbas, Sinninghe
Damsté, Vernazza, White).
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Hard and collinear regions

The matrix elements do not look too bad at first glance.

However, they contain fractional powers of the invariants ti .

Nevertheless, it is possible to carry out all phase space
integrals analytically...

...after finding a particularly nice parametrisation.

This turns out to be a Sudakov decomposition for the loop
momentum k .

Similar techniques have been considered previously for NLO
subtraction applications (Campbell, Ellis, Mondini, Williams).
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Soft Region

Soft contributions ∝ (p · p̄)−ε sit in the hard region (see
earlier).

However, there is an interesting non-vanishing soft region that
occurs for the first time at N3LO.

An incoming hard fermion can
become soft by emitting a hard
gluon.

The soft fermion can then emit
two soft gluons.

The somewhat peculiar nature of this contribution suggests it
will be heavily suppressed in logarithmic order.

We will see that this is indeed the case!
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Soft region: Phase Space Integration

The squared matrix element in the soft region is NLP only:

MNLP
soft = N

µ2
MS

−s12

ε s2

t2t3u2u3

×
{

t3 f S1

t2(t2 + t3)2

[
(s12s − t2u3 − t3u2)

(
t2 + t3 − t3 2F1

(
1, 1, 1− ε, t2

t2+t3

))]

+
f S2

s s12(t2 + t3)

[
(t2u3 − t3u2)2 − s12s(t2u3 + t3u2)

]
+

f S3

s s12t2(t2 + t3)2

[
s2
12s

2t3(t2 − t3) + t3(t2 + t3)(t2u3 − t3u2)2

+ s12st2(t2 + t3)(t2u3 − 3t3u2)− t3

(
s2
12s

2(t2 − t3) + (t2 + t3)(t2u3 − t3u2)2

− 2s12st2(t2u3 + t3u2)
)

2F1

(
1, 1, 1− ε, t2

t2+t3

)]
+ {t2, t3 ↔ u2, u3} + {t2, t3 ↔ u3, u2} + {t2, u2 ↔ t3, u3}

}
.

It is proportional to (2k1 · k2)−ε.

This requires at least two real gluons, and one virtual, hence
why this is new at N3LO.
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Soft Region: Phase Space Integration

Terms without hypergeometric functions can be integrated
using similar techniques to NNLO (van Neerven, Hamberg,
Matsuura).

Some terms with a hypergeometric function can be integrated
similarly, for arbitrary d .

Others require Mellin-Barnes techniques: we encounter up to
six-fold Mellin-Barnes integrals.

Expanding in ε, these reduce via Barnes lemmas.

Various software packages were useful e.g. MB (Czakon),
MBresolve (Smirnov2), barnesroutines (Kosower), Eule
(Gürdoğan), xSummer (Moch, Uwer), FORM (Vermaseren).

Similar techniques were used for Higgs production at N3LO
(Anastasiou, Duhr, Dulat, Herzog, Mistlberger).
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Results for the K factor

It is convenient to factor out the LO cross-section and define
the K factor at O(αn

s )(αs

4π

)n
K (n)(z) =

1

σ0

dσ(n)(z)

dz
.

Then the NLP terms at O(ε0) in the hard / collinear regions:

K
(3),H
qq̄

∣∣
C3
F

= 128

[
128

15
L5 −

128

3
L4 +

(
248

3
− 112ζ2

)
L3 + (−144 + 336ζ2 + 184ζ3)L2

+

(
144−

651

2
ζ2 − 368ζ3 +

1017

4
ζ4

)
L

]
;

K
(3),C
qq̄

∣∣
C3
F

= 32

[
−

625

24
L4 +

625

24
L3 +

(
−

75

4
+

525ζ2

4

)
L2 +

(
10−

525

8
ζ2 − 205ζ3

)
L

]
.

Note that the collinear region is NLL, matching results at
lower orders (Bonocore, Laenen, Magnea, Vernazza, White).

See arXiv:1807.09246 for full results.
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Results for the K factor

The contribution from the soft region is remarkably simple...

K
(3),S
qq̄

∣∣∣
C3
F

= 32

{
1

ε

(
2

3
ζ2 +

1

3
ζ3

)
− (4ζ2 + 2ζ3)L

}
.

...and agrees with our earlier expectation that it would be
heavily suppressed.

In fact it starts at NNNNLL order!

Interestingly, it has mixed transcendentality weight -
connection to Wilson line calculations in QCD?

Also suggests it would vanish in N = 4 SYM.
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NLP effects in Drell-Yan: Summary

We have calculated threshold effects in the 2-real, 1-virtual
contribution to DY at N3LO.

The calculation proceeds up to NLP level, and considers
abelian-like contributions ∼ C 3

F only.

Work in progress includes:
1 Full non-abelian contributions (other colour structures).
2 Other initial states.
3 Triple and single real emission contributions.

However, the results obtained thus far are already useful for
classifying the general structure of NLP effects.
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Systematic structure of NLP effects

Ideally we would like to classify NLP effects in arbitrary
processes.

At LP for example, we can write factorisation formulae
containing universal functions.

It is still an open question whether or not this is fully possible
at NLP level.

An interesting field theory question by itself, but there are also
many practical applications!

This has a long history...
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Low-Burnett-Kroll theorem

Next-to-soft effects were first studied in gauge theory (QED)
by Low (1958).

He considered external scalars; generalised to fermions by
Burnett and Kroll (1968).

Both groups only considered massive particles: all threshold
effects soft.

Del Duca (1990) potentially generalised the
Low-Burnett-Kroll result to include collinear effects.
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Other approaches

Next-to-soft effects has been considered using path-integral
methods (Laenen, Stavenga, White).

Can replace propagators
for external legs by
quantum mechanics path
integrals.

Leading term in
perturbative expansion is
classical trajectory (soft
limit).

First-order wobbles give
next-to-soft behaviour.

At least some NLP effects exponentiate (“webs”).

Works for gravity too (White)!
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Other approaches

In certain processes, can resum NLP logs to all orders using
physical evolution kernels (Almasi, Lo Presti, Moch, Soar,
Vermaseren, Vogt).

One can also use SCET (Chang, Feige, Kolodrubetz, Larkoski,
Moult, Neill, Rothen, Stewart, Tackmann, Vita, Zhu; Beneke,
Broggio, Garny, Jaskiewicz, Szafron, Vernazza, Wang)...

...or diagrammatic approaches (Gervais; Bonocore, Del Duca,
Laenen, Magnea, Melville, Sinninghe Damsté, Vernazza,
White).

Will focus briefly on the latter here.
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The Radiative Jet Function

Recently, a general factorisation formula was presented for a
single extra gluon emission up to NLP level (Bonocore,
Laenen, Magnea, Melville, Vernazza, White).

Contains a jet emission function (Del Duca), new at NLP.

(a) (b) (c)

p

n
k1

k2

n

k2

p

(d)

(e) (f) (g) (h)

Calculated at one-loop order for quarks; gluon jet in progress
(Sinninghe Damsté, Vernazza).

At NNLO, the jet emission function contributes NLP logs only
at NLL order.
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Radiative jet at higher orders

It is an open question whether this jet is sufficient to describe
NLP effects at higher orders.

Also, whether emissions from inside the jet remain NLL or
beyond.

The method of regions calculation sheds light on this.

We saw that the collinear region was NLL rather than LL,
suggesting that indeed jet emission functions are not needed
at LL.

Further work in examining the implications of the N3LO
results is in progress.
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Conclusion

Threshold effects at next-to-leading power are important for
precision physics...

...whether one resums them or not!

We have calculated a large class of NLP effects in Drell-Yan
production, at N3LO.

The results are of interest in themselves, but also useful for
exploring NLP factorisation formulae.

Much further work still to be done...
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Open Questions

Can remaining contributions to DY at N3LO be calculated
using similar techniques?

Can we understand the general structure of NLP effects:

(i) at fixed order?
(ii) at all orders?

Can the diagrammatic and SCET approaches be compared?
What are their relative strengths and weaknesses?

What are the consequences of NLP threshold effects for LHC
(or other) physics?
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