
IPv6 Only Experience at
T2_US_Nebraska

HEPiX IPv6 Working Group F2F Meeting

July 5th and 6th, 2018

 Garhan Attebury <garhan.attebury@cern.ch>

mailto:garhan.attebury@cern.ch

Motivation
“CAPSLOCK Colons are cruise control for cool -.-”

• Almost everything dual stacked for a few years now with success…  
but what about pure IPv6 only?

• Necessary? Not really, but when has that ever been the point?

• Goal: make IPv6 only hosts do what dual stack ones can  
 

!2

IPv6 Only: Round 1
The low hanging fruit

• Provisioning…

• Pure IPv6 PXE support exists (in theory) in newer hardware

• Hybrid approaches exist like bootstrapping via iPXE

• Accept failure, provision with v4 as you might still need that anyway

!3

IPv6 Only: Round 2
The marginally higher hanging fruit

• External repos without IPv6  
 
pkg.duosecurity.com (used to have v6 right?)  
yum.puppetlabs.com (same here, why are we going backwards?)  
repo.opensciencegrid.org (seriously people?! … ohh wait)

• Fixable with local mirrors / easy button hiera knobs in puppet  
… but building technical debt

!4

http://pkg.duosecurity.com
http://yum.puppetlabs.com
http://repo.opensciencegrid.org

IPv6 Only: Round 3
Software compatibility

• A few years ago the list of things not “speaking” IPv6 was high  
… much better picture these days

• Few components we use needed config tweaks / upgrading

Ganglia / check_mk / frontier-squid

• “Weird” things like SSSD ldap_uri parsing (which is 100% fine) or autofs
segfaulting because puppet can’t look up HDFS namenode

• HDFS might never support IPv6  
Had to work around various checks ensuring HDFS and FUSE function

!5

IPv6 Only: Round 4
Never forget the condor knobs

• Two critical knobs in the 8.6.x series at least: 
 
PREFER_IPV4 = False 
IPV4_ENABLE = False

• It … just works? 
 
 

!6

IPv6 Only: Round 5
Enter the docker

• Again with the world not drinking the IPv6 koolaid …  
ohh wait, that’s us again :(

• Could run local registry, which we do, just not correctly

• Load image manually… debt continues to build

• Side note: using NDP proxying for containers as testbed switch is only a
pretend L3 switch, not a proper one

!7

Handler for POST /v1.26/containers/create returned error: No such image: unlhcc/osg-wn-el6:latest
Error getting v2 registry: Get https://hcc-docker-registry.unl.edu/v2/: dial tcp 129.93.175.38:443: connect: network is unreachable
Attempting next endpoint for pull after error: Get https://registry-1.docker.io/v2/: dial tcp 34.200.90.16:443: connect: network is
unreachable

https://hcc-docker-registry.unl.edu/v2/:

IPv6 Only: Round 6
Light at the end of the tunnel

When connecting to a proxy, by default it will try on the IPv4 address
unless the proxy only has IPv6 addresses configured. The
CVMFS_IPFAMILY_PREFER=[4|6] parameter can be used to select the
preferred IP protocol for dual-stack proxies.

!8

May 13 09:43:46 red-c1005.unl.edu cvmfs2: (cms.cern.ch) switching proxy from http://129.93.239.137:3128 to http://131.225.205.134:3126
May 13 09:43:46 red-c1005.unl.edu cvmfs2: (cms.cern.ch) switching proxy from http://131.225.205.134:3126 to http://131.225.205.133:3126
May 13 09:43:46 red-c1005.unl.edu cvmfs2: (cms.cern.ch) switching proxy from http://131.225.205.133:3126 to http://128.142.33.31:3126
May 13 09:43:46 red-c1005.unl.edu cvmfs2: (cms.cern.ch) switching proxy from http://128.142.33.31:3126 to http://128.142.168.202:3126
May 13 09:43:46 red-c1005.unl.edu cvmfs2: (cms.cern.ch) failed to download repository manifest (6 - proxy connection problem)

IPv6 Only: Final Round
Prognosis: not very six-ish

This is looking promising…

… or not

!9

root 27815 0.1 0.1 1342040 40124 ? Ssl May12 0:55 /usr/bin/dockerd-current --add-runtime docker-runc=/usr/libexec/docker/docker-runc-current --default-runtime=dock
root 27826 0.0 0.0 917584 18696 ? Ssl May12 0:30 _ /usr/bin/docker-containerd-current -l unix:///var/run/docker/libcontainerd/docker-containerd.sock --metrics-i
root 344 0.0 0.0 412932 4140 ? Sl 12:56 0:00 _ /usr/bin/docker-containerd-shim-current 9f56e063af748145071ab7be2a6f7f4f1e0d55b03e1ec4203ad0d6ac8d092035
cmsprod 362 0.9 0.0 24332 2064 ? Ss 12:56 0:01 _ /bin/bash ./condor_exec.exe -v std -name gfactory_instance -entry CMS_T2_US_Nebraska_Red_gw1_whole_cm
cmsprod 7151 0.3 0.0 23940 1748 ? S 12:58 0:00 _ /bin/bash /var/lib/condor/execute/dir_320/glide_zIZdB0/main/condor_startup.sh glidein_config
cmsprod 8112 0.0 0.0 55332 5784 ? S 12:58 0:00 _ /var/lib/condor/execute/dir_320/glide_zIZdB0/main/condor/sbin/condor_master -f -pidfile /var/

05/13/18 17:58:18 (pid:7388) attempt to connect to <188.184.83.197:9685> failed: Network is unreachable (connect errno = 101). Will keep trying for 300 total seconds (299 to go).
05/13/18 18:03:17 (pid:7388) attempt to connect to <188.184.83.197:9685> failed: Network is unreachable (connect errno = 101).
05/13/18 18:03:17 (pid:7388) CCBListener: connection to CCB server vocms0806.cern.ch:9685 failed; will try to reconnect in 60 seconds.
05/13/18 18:03:20 (pid:7388) attempt to connect to <131.225.205.232:9685> failed: Network is unreachable (connect errno = 101). Will keep trying for 300 total seconds (297 to go).

vocms0806.cern.ch = IPv4 only
cmssrv258.fnal.gov = IPv4 only
gfactory-1.t2.ucsd.edu = IPv4 only

http://vocms0806.cern.ch
http://cmssrv258.fnal.gov
http://gfactory-1.t2.ucsd.edu

Final score
Almost there…

• Functioning worker node? 
Yes, so long as you don’t actually want to run CMS jobs

• Most IPv6 issues are fixable with config tweaks or upstream/external support

• Globus (gfal-copy / globus-url-copy) work fine  
XRootD (xrdcp) works fine

• Just factory support remaining? USCMS only issue?

• Update the USCMS factory IPv6 support is there in theory, and has been
tested dual stack in the past, but is “off” until some other work is finished and
it can be rolled out safely (again)

!10

(Extra slide: IPv6 testbed addressing)  
(basically straight out of a Docker IPv6 page)

• Use a single /64 for testbed because “easy enough” 
2600:900:6:1105::/64

• Split into /76 nets for each physical host (4096 possible hosts) 
red-c1005 = 2600:900:6:1105:50::/76 
red-c1006 = 2600:900:6:1105:60::/76 
red-c1007 = 2600:900:6:1105:70::/76 
… etc

• DOCKER_NETWORK_OPTIONS set to unique /80 for each host. Minimum recommended is /80 to allow
container IPs to end with container’s MAC 
red-c1005 = —fixed-cidr=2600:900:6:1105:51::/80 
—> container #1 = 2600:900:6:1105:51:242:ac13:4/80 
—> container #2 = 2600:900:6:1105:51:242:ac13:2/80 
… etc

• Can have 16 /80’s per host. Really just need one which can have plenty of containers within. Not implying
this is “best practice” or even a good idea, but it has worked well enough for the few hosts in the testbed

