Bastian Brandt

ITP Goethe-Universität Frankfurt

In collaboration with Gunnar Bali, Gergely Endrődi and Benjamin Gläßle

23.08.2018

Contents

- 1. Motivation
- 2. Additive quark mass renormalisation at finite B
- 3. Meson spectrum and polarisabilities
- 4. Pion decay constants and weak pion decay
- 5. Summary

1. Motivation

Strong (external) magnetic fields

- non-central heavy lon collisions
 - $(\sim 10^{18}~G~~
 ightarrow~0.02~GeV^2)$

▶ surface and interior of magnetars $(\sim 10^{15} - 10^{20} \text{ G} \rightarrow \lesssim 2 \text{ GeV}^2)$

(also for results of neutron star mergers)

• the early universe
$$(\sim 10^9 \text{ G} - \text{at } T_C^{ ext{QCD}})$$

 \Rightarrow Properties of QCD in external magnetic fields are important!

- affect the spectrum of bound states
 - charged particles: direct influence on masses
 - neutral particles: influenced indirectly (subleading effect?)

affect the spectrum of bound states

- charged particles: direct influence on masses
- neutral particles: influenced indirectly (subleading effect?)

charged vector meson condensation? [Müller, Schramm, Schramm, MPLA 07 (1992)] naively: $m_{\rho_{\pm}^{\pm}}(B_{cr}) = 0 \longrightarrow$ system becomes superconducting [Chernodub, PRL 106 (2011)]

- affect the spectrum of bound states
 - charged particles: direct influence on masses
 - neutral particles: influenced indirectly (subleading effect?)

charged vector meson condensation? [Müller, Schramm, Schramm, MPLA 07 (1992)] naively: $m_{\rho_{\pm}^{\pm}}(B_{cr}) = 0 \longrightarrow$ system becomes superconducting [Chernodub, PRL 106 (2011)]

influence the thermodynamic properties of QCD!

[review: Andersen, Naylor, Tranberg, arXiv:1411.7176]

- phase diagram
- equation of state

- affect the spectrum of bound states
 - charged particles: direct influence on masses
 - neutral particles: influenced indirectly (subleading effect?)

charged vector meson condensation? [Müller, Schramm, Schramm, MPLA 07 (1992)] naively: $m_{\rho_{\pm}^{\pm}}(B_{cr}) = 0 \longrightarrow$ system becomes superconducting [Chernodub, PRL 106 (2011)]

influence the thermodynamic properties of QCD!

[review: Andersen, Naylor, Tranberg, arXiv:1411.7176]

- phase diagram
- equation of state
- affect decay rates!
 - indirectly (change of masses and decay constants)
 - directly (states of charged particles are Landau levels)

- affect the spectrum of bound states
 - charged particles: direct influence on masses
 - neutral particles: influenced indirectly (subleading effect?)

charged vector meson condensation? [Müller, Schramm, Schramm, MPLA 07 (1992)] naively: $m_{\rho_{\pm}^{\pm}}(B_{cr}) = 0 \longrightarrow$ system becomes superconducting [Chernodub, PRL 106 (2011)]

influence the thermodynamic properties of QCD!

[review: Andersen, Naylor, Tranberg, arXiv:1411.7176]

- phase diagram
- equation of state
- affect decay rates!
 - indirectly (change of masses and decay constants)
 - directly (states of charged particles are Landau levels)

affect the spectrum of bound states

- charged particles: direct influence on masses
- neutral particles: influenced indirectly (subleading effect?)

charged vector meson condensation? [Müller, Schramm, Schramm, MPLA 07 (1992)] naively: $m_{\rho_{\pm}^{\pm}}(B_{cr}) = 0 \longrightarrow$ system becomes superconducting [Chernodub, PRL 106 (2011)]

influence the thermodynamic properties of QCD!

[review: Andersen, Naylor, Tranberg, arXiv:1411.7176]

- phase diagram
- equation of state

affect decay rates!

- indirectly (change of masses and decay constants)
- directly (states of charged particles are Landau levels)

Cases where spectrum and decay rates are important

compact stellar objects:

- masses of lightest hadrons appear in EOS
- decay rates important for stability and equilibrium analyses
- cooling mechanisms: (e.g. for magnetars)

[Duncan, Thompson, Astroph. J 392 (1992)]

- mainly through weak decays and (inverse) β-decay (Urca processes)
- of particular relevance: pion decay!
- model building for the phase diagram and EOS:

need spectrum as input and/or for comparison!

for instance: Hadron resonance gas at finite magnetic fields

[Endrődi, JHEP 1304 (2013)]

- phase diagram: rather well understood from LQCD
 - phase diagram

 [Bali, et al, JHEP 1202 (2012);
 Endrödi, JHEP 1507 (2015)]
 - equation of state

[Bali, et al, JHEP 1408 (2014)]

- phase diagram: rather well understood from LQCD
 - phase diagram

 [Bali, et al, JHEP 1202 (2012);
 Endrődi, JHEP 1507 (2015)]
 - equation of state

[Bali, et al, JHEP 1408 (2014)]

spectrum: only some first quenched studies (no continuum limit)

 Wilson fermions:
 [Wilson: Hidaka, Yan

 Overlap fermions:
 [Luschevskaya display]

[Wilson: Hidaka, Yamamoto, PRD 87 (2013)] [Luschevskaya *et al*, JHEP 1709 (2017)]

more studies concerning magnetic moments and polarisabilities

- phase diagram: rather well understood from LQCD
 - phase diagram

 [Bali, et al, JHEP 1202 (2012);
 Endrődi, JHEP 1507 (2015)]
 - equation of state

[Bali, et al, JHEP 1408 (2014)]

spectrum: only some first quenched studies (no continuum limit)

 Wilson fermions:
 [Wilson: Hidaka, Yamamoto, PRD 87 (2013)]

 Overlap fermions:
 [Luschevskaya et al, JHEP 1709 (2017)]

more studies concerning magnetic moments and polarisabilities

decay rates/decay constants no lattice studies so far!!!

- phase diagram: rather well understood from LQCD
 - phase diagram

 Bali, et al, JHEP 1202 (2012);
 Endrődi, JHEP 1507 (2015)]
 - equation of state

[Bali, et al, JHEP 1408 (2014)]

spectrum: only some first quenched studies (no continuum limit)

 Wilson fermions:
 [Wilson: Hidaka, Yamamoto, PRD 87 (2013)]

 Overlap fermions:
 [Luschevskaya et al, JHEP 1709 (2017)]

more studies concerning magnetic moments and polarisabilities

decay rates/decay constants no lattice studies so far!!!
 actually: no full calculation for decay rates!
 (only investigated changes of decay constants, e.g., in \(\chi\)PT()

Magnetic moments and polarisabilities of hadronsexternal B-fields: can be used to probe structure of hadronsenergy (mass) of hadron H with B = 0 mass m and charge q: $E_{H;n}^2 = m^2 + (1+2n)|qB| - g_H s_z qB - 4\pi m \beta_H |eB|^2 + \dots$ g_H : magnetic moment β_H : polarisability

 s_z : spin projection on *B*-field (**B** in *z*-direction)

Magnetic moments and polarisabilities of hadronsexternal B-fields: can be used to probe structure of hadronsenergy (mass) of hadron H with B = 0 mass m and charge q: $E_{H;n}^2 = m^2 + (1+2n)|qB| - g_H s_z qB - 4\pi m \beta_H |eB|^2 + \dots$ g_H : magnetic moment β_H : polarisability s_z : spin projection on B-fieldB in z-direction) \Rightarrow g_H and β_H can be extracted from spectrum at finite B

(so-called background field method [Martinelli et al, PLB 116 (1982)])

Magnetic moments and polarisabilities of hadrons external *B*-fields: can be used to probe structure of hadrons energy (mass) of hadron *H* with B = 0 mass *m* and charge *q*: $E_{H;n}^2 = m^2 + (1+2n)|qB| - g_H s_z qB - 4\pi m \beta_H |eB|^2 + \dots$ $n \in \mathbb{Z}_0^+$ g_H : magnetic moment β_H : polarisability s_z : spin projection on *B*-field (**B** in *z*-direction) $\Rightarrow g_H$ and β_H can be extracted from spectrum at finite *B* (so-called background field method [Martinelli et al, PLB 116 (1982)])

polarisabilities: important to probe electromagnetic structure of hadrons

 can be compared to experimental data (mostly proton and pion) (recent and new experiments for measurements of pion polarisabilities)

▶ for neutrons and other mesons: results less precise/not available ⇒ lattice can potentially decrease uncertainties and make predictions

• theoretically not well understood beyond χPT

Lattice setup with quenched Wilson fermions

- use the (unimproved) Wilson discretisation for fermions (advantageous for spectroscopy)
- first: work in the quenched approximation

 $(N_f = 1 + 1 \text{ simulations extremely difficult for Wilson fermions})$ quenched spectrum reproduces QCD spectrum typically up to 10%

3 different lattice spacings:

a [fm]	0.125	0.093	0.062
lattice	$36 imes12^3$	$48 imes 16^3$	$72 imes 24^3$

different pion masses between 417 and 770 MeV

focus on $m_{\pi} = 417 \text{ MeV}$ (physical size $m_{\pi}L \sim 3$)

- different external fields up to 4 GeV² (valence)
- ▶ will show first results with $N_f = 2 + 1$ in the electro-quenched setup (configurations generated with $N_f = 2 + 1$ but B = 0 - RQCD) O(a)-improved; a = 0.064 fm; $m_{\pi} = 418$ MeV; 64×32^3

Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD \Box Additive quark mass renormalisation at finite *B*

2. Additive quark mass renormalisation at finite B

[PoS LAT2015 (2016), arXiv:1510.03899; PRD 97 (2018), arXiv:1707.05600]

Discrepancy for π^0 results in the literature:

Wilson fermions:

non-monotonous [Hidaka, Yamamoto, PRD 87 (2013)] (our results also show this)

Discrepancy for π^0 results in the literature:

 Wilson fermions: non-monotonous

 [Hidaka, Yamamoto, PRD 87 (2013)]
 (our results also show this)
 also in N_f = 2 + 1 setup

Discrepancy for π^0 results in the literature:

Wilson fermions:

non-monotonous [Hidaka, Yamamoto, PRD 87 (2013)] (our results also show this)

also in $N_f = 2 + 1$ setup

 Overlap and staggered results: monotonous decrease

[Luschevskaya *et al*, NPB 898 (2015)]

[Bali, Endrődi et al, JHEP02 (2012)]

Discrepancy for π^0 results in the literature:

 Wilson fermions: non-monotonous
 [Hidaka, Yamamoto, PRD 87 (2013)]
 (our results also show this)
 also in N_f = 2 + 1 setup
 Overlap and staggered results:
 monotonous decrease
 [Luschevskaya et al, NPB 898 (2015)]
 [Bali, Endrődi et al, JHEP02 (2012)]

Wilson fermions: explicitly break full chiral symmetry

 \Rightarrow quark mass renormalises additively (shear lattice artefact)

Discrepancy for π^0 results in the literature:

 Wilson fermions: non-monotonous
 [Hidaka, Yamamoto, PRD 87 (2013)]
 (our results also show this)
 also in N_f = 2 + 1 setup
 Overlap and staggered results:
 monotonous decrease
 [Luschevskaya et al, NPB 898 (2015)]
 [Bali, Endrödi et al, JHEP02 (2012)]

Wilson fermions: explicitly break full chiral symmetry

 \Rightarrow quark mass renormalises additively (shear lattice artefact)

known from QCD+QED:

additive renormalisation changes with coupling (presence of field)

[e.g. Borsanyi, et al Science 347 (2015)]

 \Rightarrow something similar happens for external *B*-fields

[Bali, BB, Endrődi, Gläßle, PoS LAT2015 (2016)]

Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD \square Additive quark mass renormalisation at finite *B*

Tuning of quark masses in the interacting theory

- standard method for QCD+QED:
 adjust m_{u/d} so that pseudo-pions (π^{u/d}) masses remain constant.
 [BMW, PRL 111 (2013); Science 347 (2015)]
- advantage: no renormalisation needed.
- ▶ problem: disconnected diagrams present. \Rightarrow typically neglected

Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD \square Additive quark mass renormalisation at finite *B*

Tuning of quark masses in the interacting theory

- standard method for QCD+QED:
 adjust m_{u/d} so that pseudo-pions (π^{u/d}) masses remain constant.
 [BMW, PRL 111 (2013); Science 347 (2015)]
- advantage: no renormalisation needed.
- ▶ problem: disconnected diagrams present. \Rightarrow typically neglected

for external magnetic fields: masses will change

 \Rightarrow Method cannot be applied!

Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD \square Additive quark mass renormalisation at finite *B*

Tuning of quark masses in the interacting theory

- standard method for QCD+QED:
 adjust m_{u/d} so that pseudo-pions (π^{u/d}) masses remain constant.
 [BMW, PRL 111 (2013); Science 347 (2015)]
- advantage: no renormalisation needed.
- ▶ problem: disconnected diagrams present. \Rightarrow typically neglected

for external magnetic fields: masses will change

 \Rightarrow Method cannot be applied!

alternatives to determine $m_c(B)$:

• use:
$$m_{\pi^{u/d}}(\mathbf{B}) \to 0$$
 for $m_{u/d} \to 0$.

Tuning of quark masses in the interacting theory

- standard method for QCD+QED:
 adjust m_{u/d} so that pseudo-pions (π^{u/d}) masses remain constant.
 [BMW, PRL 111 (2013); Science 347 (2015)]
- advantage: no renormalisation needed.
- ▶ problem: disconnected diagrams present. \Rightarrow typically neglected

for external magnetic fields: masses will change

 \Rightarrow Method cannot be applied!

alternatives to determine $m_c(B)$:

- use: $m_{\pi^{u/d}}(\mathbf{B})
 ightarrow 0$ for $m_{u/d}
 ightarrow 0$.
- ▶ use current quark masses \widetilde{m}_f from Ward identities (WIs) determine $m_{c,f}$ via $\widetilde{m}_f \rightarrow 0$

for this: need to compute WIs for QCD+QED (not available in literature)

 \Rightarrow get new terms (QED: covariant derivative does not commute with τ^i)

Additive quark mass renormalisation at finite B

Ward identities for QCD+QED [Bali, BB, Endrödi, Gläßle, PRD 97 (2018)]

we have computed AWIs and VWIs for QCD+QED: (in continuum and for Wilson fermions)

Additive quark mass renormalisation at finite B

Ward identities for QCD+QED [Bali, BB, Endrödi, Gläßle, PRD 97 (2018)]

we have computed AWIs and VWIs for QCD+QED: (in continuum and for Wilson fermions)

- charged WIs $(\bar{d}u \text{ and } \bar{u}d)$ obtain new terms even in the continuum
 - advantage: disconnected diagrams do not appear
 - disadvantage: vector and axial WI are needed for individual quark masses
 - observe insufficient signals for charged WIs

Additive quark mass renormalisation at finite B

Ward identities for QCD+QED [Bali, BB, Endrödi, Gläßle, PRD 97 (2018)]

we have computed AWIs and VWIs for QCD+QED: (in continuum and for Wilson fermions)

- charged WIs $(\bar{d}u \text{ and } \bar{u}d)$ obtain new terms even in the continuum
 - advantage: disconnected diagrams do not appear
 - disadvantage: vector and axial WI are needed for individual quark masses
 - observe insufficient signals for charged WIs
- "neutral" WIs ($\bar{u}u$ and $\bar{d}d$): left unchanged
 - ⇒ define "neutral" current quark masses via:

$$a\widetilde{m}_{u/d} = \frac{\partial_0 \langle (J_A)_0^{u/d}(x_0) P^{u/d}(0) \rangle}{2 \langle P^{u/d}(x_0) P^{u/d}(0) \rangle}$$

- advantage: easy to compute (standard PCAC masses)
- disadvantage:

disconnected diagrams are ignored (and anomaly terms)

 \Rightarrow unknown systematic effect in tuning

Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD \Box Additive quark mass renormalisation at finite *B*

Determination of $m_{c,u/d}$

perform a (linear) chiral extrapolation of $\widetilde{m}_{u/d}$ to determine $m_{c,u/d}$

(results have been checked with higher orders in $(\bar{m} - \bar{m}_c)$.)

Additive quark mass renormalisation at finite B

Determination of $m_{c,u/d}$

for visualisation use:

$$\Delta m_{c;f}(a,B) = rac{m_{c;f}(a,B) - m_{c}(a,0)}{m_{f}(a,0;m_{\pi} = 415\,{
m MeV})}$$

Additive quark mass renormalisation at finite B

Additive quark mass renormalisation at finite B

 \Rightarrow tuning resolves the discrepancy
Additive quark mass renormalisation at finite B

 \Rightarrow tuning resolves the discrepancy

result of tuning: removal of a particular type of *B*-dependent lattice artefacts (improvement scheme – but no Symanzik improvement!)

tuning of the quark mass with *B*: lines of constants physics become *B*-dependent (LCP(B)s)

3. Meson spectrum and polarisabilities [PRD 97 (2018), arXiv:1707.05600]

Results for the spectrum – Pions

 π^{0} : (spin 0, q = 0)

 π^{\pm} : (spin 0, $q = \pm 1$)

 \Rightarrow not affected directly

 \Rightarrow energies: $E^2 = m_\pi^2 + (1+2n)|eB|$

Results for the spectrum – Pions

 π^0 : (spin 0, q = 0)

not affected directly \Rightarrow

energies: $E^2 = m_{\pi}^2 + (1+2n)|eB|$ \Rightarrow

Results for the spectrum – Pions

Internal structure:

Internal structure:

 \Rightarrow $\;$ affected by subleading effects

 \Rightarrow additional subleading effects

Results for the spectrum - pions continuum

Interpolating curve: $\frac{m_{\pi^u}(B)}{m_{\pi}(0)} = \frac{1+3.2(8) \text{ GeV}^{-2} \ (eB)^2}{1+4.8(1.2) \text{ GeV}^{-2} \ (eB)^2}$

LCP(B) – only a removal of lattice artefacts?

Results for the spectrum – charged ρ -mesons $s_z = \pm 1$

Results for the spectrum – charged ρ -mesons $s_z = \pm 1$

$$ho_{s_z=\pm 1}^{\pm}$$
: (spin 1, $q=\pm 1$) $E^2=m_{
ho}^2+(2n+1)|eB|-2s_zB$

 ρ -meson condensation: naively E = 0 when $q = s_z = 1$ and $eB = m_{\rho}^2$. \Rightarrow system could become superconducting [Chernodub, PRL 106 (2011)] QCD inequalities: condensation cannot occur [Hidaka, Yamamoto, PRD 87 (2013)]

Results for the spectrum – charged ρ -mesons $s_z = \pm 1$

$$ho_{s_z=\pm 1}^{\pm}$$
: (spin 1, $q=\pm 1$) $E^2 = m_{
ho}^2 + (2n+1)|eB| - 2s_z B$

 $\begin{array}{ll} \rho\text{-meson condensation:} & \text{naively } E = 0 \text{ when } q = s_z = 1 \text{ and } eB = m_\rho^2. \\ \Rightarrow & \text{system could become superconducting} & [Chernodub, PRL 106 (2011)] \\ \text{QCD inequalities: condensation cannot occur} & [Hidaka, Yamamoto, PRD 87 (2013)] \\ \Rightarrow & \text{supported by our data} \end{array}$

Results for the spectrum – ρ -mesons continuum

 $\rho_{s_2=0}^{0,\pm}$ -mesons: magnetic field enables mixing $\rho_0^{0,\pm} \longleftrightarrow \pi^{\pm,0}$ (extraction of mass eigenstates via correlation matrices)

Results for the spectrum – $N_f = 2 + 1$

 \Rightarrow qualitative agreement with quenched results

Polarisabilities - quenched setup

for extraction of polarisabilities: fit the spectrum to the form

$$E_{H;n}^2 = m^2 + (1+2n)|qB| - g_H s_z qB - 4\pi m \beta_H |eB|^2 + \dots$$
 $n \in \mathbb{Z}_0^+$

Polarisabilities – quenched setup

for extraction of polarisabilities: fit the spectrum to the form

$$E_{H;n}^2 = m^2 + (1+2n)|qB| - g_H s_z qB - 4\pi m \beta_H |eB|^2 + \dots$$
 $n \in \mathbb{Z}_0^+$

for g_{ρ} : good agreement with χPT (≈ 2)

[Djukanovic et al, PLB 730 (2014)]

Polarisabilities - effect of improvement

polarisability defined by: β

$$B_{H} = \left. \frac{1}{8\pi m} \frac{\partial^2 E_{H;0}^2}{\partial |eB|^2} \right|_{B=0}$$

background field method: compute full derivative

$$\frac{dE_{H;0}^2}{d|eB|} = \frac{\partial E_{H;0}^2}{\partial |eB|} - \sum_{f} \frac{\partial E_{H;0}^2}{\partial m_f} \frac{\partial m_{c;f}}{\partial |eB|}$$

Polarisabilities - effect of improvement

polarisability defined by: $\beta_H = \frac{1}{8\pi m} \frac{\partial^2 E_{H;0}^2}{\partial |eB|^2} \Big|_{B=0}$

background field method: compute full derivative

$$\frac{dE_{H;0}^2}{d|eB|} = \frac{\partial E_{H;0}^2}{\partial |eB|} - \sum_{f} \frac{\partial E_{H;0}^2}{\partial m_f} \frac{\partial m_{c;f}}{\partial |eB|}$$

Polarisabilities – effect of improvement

polarisability defined by: $\beta_H = \left. \frac{1}{8\pi m} \frac{\partial^2 E_{H;0}^2}{\partial |eB|^2} \right|_{B=0}$

background field method: compute full derivative

$$\frac{dE_{H;0}^2}{d|eB|} = \frac{\partial E_{H;0}^2}{\partial |eB|} - \sum_{f} \frac{\partial E_{H;0}^2}{\partial m_f} \frac{\partial m_{c;f}}{\partial |eB|}$$

Polarisabilities – effect of improvement

polarisability defined by: β

$$_{H}=\left.\frac{1}{8\pi m}\frac{\partial^{2}E_{H;0}^{2}}{\partial|eB|^{2}}\right|_{B=0}$$

background field method: compute full derivative

$$\frac{dE_{H;0}^2}{d|eB|} = \frac{\partial E_{H;0}^2}{\partial|eB|} - \sum_{f} \frac{\partial E_{H;0}^2}{\partial m_f} \frac{\partial m_{c;f}}{\partial|eB|}$$

more important for small m_f

•

0.40.6 Ξ

0.8

Pion decay constants and weak pion decay

4. Pion decay constants and weak pion decay [PRL 121 (2018), arXiv:1805.10971]

Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD Pion decay constants and weak pion decay

Weak pion decay

external magnetic fields: also affects the decay rates of particles!

decay of π^- into leptons:

external magnetic fields: also affects the decay rates of particles!

decay of π^- into leptons:

effective four-fermi theory:

external magnetic fields: also affects the decay rates of particles!

decay of π^- into leptons:

effective four-fermi theory:

full decay rate:
$$\Gamma = \int d\Phi \sum_{< out>} |\mathcal{M}|^2$$

external magnetic fields: also affects the decay rates of particles! decay of π^- into leptons: effective four-fermi theory: π $\bar{\nu}_{\ell}$ full decay rate: $\Gamma = \int d\Phi \sum_{n \in \mathcal{M}} |\mathcal{M}|^2$ $\mathcal{M} = \frac{G \cos(\theta_c)}{\sqrt{2}} \underbrace{\bar{u}_{\ell} \gamma^{\mu} (1 - \gamma_5) v_{\nu}}_{\sqrt{2}} \underbrace{\langle 0 | \bar{d}(x) \gamma_{\mu} (1 - \gamma_5) u(x) | \pi^- (\vec{p} = 0) \rangle}_{\sqrt{2}}$ amplitude:

external magnetic fields: also affects the decay rates of particles! decay of π^- into leptons: effective four-fermi theory: $\bar{\nu}_{\ell}$ full decay rate: $\Gamma = \int d\Phi \sum_{\langle n,n \rangle} |\mathcal{M}|^2$ $\mathcal{M} = \frac{G \cos(\theta_c)}{\sqrt{2}} \underbrace{\overline{u}_{\ell} \gamma^{\mu} (1 - \gamma_5) v_{\nu}}_{\sqrt{2}} \underbrace{\langle 0 | \overline{d}(x) \gamma_{\mu} (1 - \gamma_5) u(x) | \pi^- (\overrightarrow{p} = 0) \rangle}_{\sqrt{2}}$ amplitude: $\equiv H_{\mu}$ QCD

 \Rightarrow need to compute the QCD matrix element non-perturbatively

Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD Pion decay constants and weak pion decay

QCD matrix element – general form

focus on QCD matrix element:

$$H_{\mu} = \langle 0 | \bar{d}(x) \gamma_{\mu} u(x) | \pi^{-}(p) \rangle - \langle 0 | \bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) | \pi^{-}(p) \rangle$$

parameterised in terms of Lorentz (axial-)vectors (at T = 0)

Pion decay constants and weak pion decay

QCD matrix element – general form

focus on QCD matrix element:

$$H_{\mu} = \langle 0 | \bar{d}(x) \gamma_{\mu} u(x) | \pi^{-}(p) \rangle - \langle 0 | \bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) | \pi^{-}(p) \rangle$$

parameterised in terms of Lorentz (axial-)vectors (at T = 0)

- at B = 0: (available: p_{μ})
 - \Rightarrow definition of pion decay constant f_{π}

$$egin{aligned} &\langle 0|ar{d}(x)\gamma_{\mu}u(x)|\pi^{-}(p)
angle = 0 \ &\langle 0|ar{d}(x)\gamma_{\mu}\gamma_{5}u(x)|\pi^{-}(p)
angle = ie^{ipx}f_{\pi}p_{\mu} \end{aligned}$$

Pion decay constants and weak pion decay

QCD matrix element – general form

focus on QCD matrix element:

$$H_{\mu} = \langle 0 | \bar{d}(x) \gamma_{\mu} u(x) | \pi^{-}(p) \rangle - \langle 0 | \bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) | \pi^{-}(p) \rangle$$

parameterised in terms of Lorentz (axial-)vectors (at T = 0)

• at
$$B = 0$$
: (available: p_{μ})

 \Rightarrow definition of pion decay constant f_{π}

• at
$$B > 0$$
: (available: p_{μ} and tensor $F_{\mu\nu}$)

 \Rightarrow 3 decay constants (has been unknown before)

Pion decay constants and weak pion decay

QCD matrix element – general form

focus on QCD matrix element:

$$H_{\mu} = \langle 0 | \bar{d}(x) \gamma_{\mu} u(x) | \pi^{-}(p) \rangle - \langle 0 | \bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) | \pi^{-}(p) \rangle$$

parameterised in terms of Lorentz (axial-)vectors (at T = 0)

• at
$$B = 0$$
: (available: p_{μ})

 \Rightarrow definition of pion decay constant f_{π}

• at
$$B > 0$$
: (available: p_{μ} and tensor $F_{\mu\nu}$)

 \Rightarrow 3 decay constants (has been unknown before)

• for **B** $\parallel \hat{z}$: $f_{\pi}^{\prime\prime}$ does not contribute for **E** = 0

$$\langle 0 | \bar{d}(x) \gamma_{\mu} u(x) | \pi^{-}(p) \rangle = i e^{i p x} \left[i \frac{f'_{\pi}}{2} \epsilon_{\mu\nu\rho\sigma} e F^{\nu\rho} p^{\sigma} \right] \\ \langle 0 | \bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) | \pi^{-}(p) \rangle = i e^{i p x} \left[f_{\pi} p_{\mu} + f''_{\pi} e F_{\mu\nu} p^{\nu} \right]$$

Pion decay constants and weak pion decay

QCD matrix element – general form

focus on QCD matrix element:

$$H_{\mu} = \langle 0 | \bar{d}(x) \gamma_{\mu} u(x) | \pi^{-}(p) \rangle - \langle 0 | \bar{d}(x) \gamma_{\mu} \gamma_{5} u(x) | \pi^{-}(p) \rangle$$

parameterised in terms of Lorentz (axial-)vectors (at T = 0)

• at
$$B = 0$$
: (available: p_{μ})

 \Rightarrow definition of pion decay constant f_{π}

► at
$$B > 0$$
: (available: p_{μ} and tensor $F_{\mu\nu}$)
 \Rightarrow 3 decay constants (has been unknown before)

• for **B** $\parallel \hat{z}$: f''_{π} does not contribute for **E** = 0

$$\langle 0|\bar{d}(x)\gamma_{\mu}u(x)|\pi^{-}(p)\rangle = ie^{ipx} \left[i\frac{f_{\pi}'}{2}\epsilon_{\mu\nu\rho\sigma}eF^{\nu\rho}p^{\sigma}\right] \\ \langle 0|\bar{d}(x)\gamma_{\mu}\gamma_{5}u(x)|\pi^{-}(p)\rangle = ie^{ipx} \left[f_{\pi}p_{\mu} + f_{\pi}''eF_{\mu\nu}p^{\nu}\right]$$

 $\Rightarrow \qquad H_{\mu}(B) = -ie^{im_{\pi}(B)x_0}m_{\pi}(B)[f_{\pi}(B)\delta_{\mu 0} + if'_{\pi}(B)eB\delta_{\mu 3}]$ (\$\pi\$ in lowest Landau level)

Pion decay constants and weak pion decay

QCD Amplitude – decay constants for B > 0

dynamical staggered quarks: pion mass: $m_{\pi} = 135 \text{ MeV}$ (setup: [Bali, Endrődi, JHEP 1202 (2012)])

quenched Wilson quarks:

pion mass: $m_{\pi} = 417$ MeV (setup as before)

fit functions:

$$\frac{f_{\pi}(B)}{f_{\pi}(0)} = \begin{bmatrix} 1 + c_1 |eB| \end{bmatrix} \frac{m_{\pi}(0)}{m_{\pi}(B)} \qquad \qquad \frac{f_{\pi}'(B)}{f_{\pi}(0)} = \begin{bmatrix} d_0 + d_1 |eB| + d_2 |eB|^2 \end{bmatrix} \frac{m_{\pi}(0)}{m_{\pi}(B)}$$

Pion decay constants and weak pion decay

QCD Amplitude – decay constants for B > 0

dynamical staggered quarks: pion mass: $m_{\pi} = 135 \text{ MeV}$ (setup: [Bali, Endrődi, JHEP 1202 (2012)])

quenched Wilson quarks:

pion mass: $m_{\pi} = 417$ MeV (setup as before)

fit functions:

$$\frac{f_{\pi}(B)}{f_{\pi}(0)} = \left[1 + c_1 |eB|\right] \frac{m_{\pi}(0)}{m_{\pi}(B)} \qquad \qquad \frac{f_{\pi}'(B)}{f_{\pi}(0)} = \left[d_0 + d_1 |eB| + d_2 |eB|^2\right] \frac{m_{\pi}(0)}{m_{\pi}(B)}$$

for small magnetic fields: $f'_{\pi} = 0.10(2) \text{ GeV}^{-1} + O(B)$

-Pion decay constants and weak pion decay

Full decay rate [PRL 121 (2018), arXiv:1805.10971]

$$\frac{\Gamma(B)}{\Gamma(0)} = \frac{f_{\pi}^2(B) + [f_{\pi}'(B) eB]^2}{f_{\pi}^2(0)} \cdot \left[1 - \frac{m_{\ell}^2}{m_{\pi}^2(0)}\right]^{-2} \cdot \frac{2 |eB|}{m_{\pi}(0)m_{\pi}(B)}$$

(valid: $eB \gg m_\ell^2$; LLL approximation exact: $eB > m_\pi^2(0) - m_\ell^2(0))$

Pion decay constants and weak pion decay

Full decay rate [PRL 121 (2018), arXiv:1805.10971]

$$\frac{\Gamma(B)}{\Gamma(0)} = \frac{f_{\pi}^2(B) + [f_{\pi}'(B) eB]^2}{f_{\pi}^2(0)} \cdot \left[1 - \frac{m_{\ell}^2}{m_{\pi}^2(0)}\right]^{-2} \cdot \frac{2|eB|}{m_{\pi}(0)m_{\pi}(B)}$$

(valid: $eB \gg m_\ell^2$; LLL approximation exact: $eB > m_\pi^2(0) - m_\ell^2(0))$

Pion decay constants and weak pion decay

Full decay rate [PRL 121 (2018), arXiv:1805.10971]

$$\frac{\Gamma(B)}{\Gamma(0)} = \frac{f_{\pi}^2(B) + [f_{\pi}'(B) eB]^2}{f_{\pi}^2(0)} \cdot \left[1 - \frac{m_{\ell}^2}{m_{\pi}^2(0)}\right]^{-2} \cdot \frac{2|eB|}{m_{\pi}(0)m_{\pi}(B)}$$

(valid: $eB \gg m_\ell^2$; LLL approximation exact: $eB > m_\pi^2(0) - m_\ell^2(0))$

typical B > 0 lifetime: $\tau_{\pi} = 5 \cdot 10^{-10}$ sec at $B \approx 0.3$ GeV²/e= $5 \cdot 10^{15}$ T

Pion decay constants and weak pion decay

Full decay rate [PRL 121 (2018), arXiv:1805.10971]

$$\frac{\Gamma(B)}{\Gamma(0)} = \frac{f_{\pi}^2(B) + [f_{\pi}'(B) eB]^2}{f_{\pi}^2(0)} \cdot \left[1 - \frac{m_{\ell}^2}{m_{\pi}^2(0)}\right]^{-2} \cdot \frac{2|eB|}{m_{\pi}(0)m_{\pi}(B)}$$

(valid: $eB \gg m_\ell^2$; LLL approximation exact: $eB > m_\pi^2(0) - m_\ell^2(0))$

Summary

- Spectrum and decay rates for B > 0: important quantities (particularly interesting for astrophysical applications)
- Quenched lattice results in the continuum:
 - π^{\pm} and ρ^{\pm}_{\mp} masses increase as for point particles
 - π^0 masses decrease down to 60% of $m_{\pi}(0)$
 - ρ_{\pm}^{\pm} masses decrease but remains > 0 \Rightarrow no ρ -meson condensation!?
- key ingredient: tuning of m_q with B for Wilson fermions
- new decay constants appear for B > 0 (here: example of π[±]; same happens for π⁰, K^{±,0}, ...)

we have measured the new decay constants on the lattice

- weak π^{\pm} decay: drastically enhanced (much smaller lifetimes)
- Future prospects:
 - look at other decays (Urca processes, ...)
 - compute polarisabilities
Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD

Thank you for your attention!

Results for the spectrum – continuum extrapolations

unimproved Wilson fermions \Rightarrow lattice artefacts of O(a)

here: perform linear continuum extrapolations in a

check for relevant higher order terms: use only two smallest lattice spacings for extrapolation

 \Rightarrow included in systematic error

Changes to perturbative computation [PRL 121 (2018), arXiv:1805.10971]

- ► external states for π^- and ℓ^- at finite *B*: so called Landau levels energies lepton: $E_{n,k_z,s_z} = \sqrt{(2n+1+2s_z)eB + k_z^2 + m_\ell^2}$ lowest Landau level (LLL): n = 0, $s_z = -1/2$ energy conservation: $eB > m_\pi (0)^2 - m_\ell^2$ only LLL contributes for lepton multiplicities of Landau-Levels $\sim \Phi = eBL^2$ \Rightarrow regularisation in a finite volume $V = L^3$ needed
- outgoing u_ℓ state has $s_z = 1/2$
 - \Rightarrow no spin sum for outgoing states
 - \Rightarrow neutrino momentum \parallel **B**

Changes to perturbative computation [PRL 121 (2018), arXiv:1805.10971]

- ► external states for π^- and ℓ^- at finite *B*: so called Landau levels energies lepton: $E_{n,k_z,s_z} = \sqrt{(2n+1+2s_z)eB + k_z^2 + m_\ell^2}$ lowest Landau level (LLL): n = 0, $s_z = -1/2$ energy conservation: $eB > m_\pi (0)^2 - m_\ell^2$ only LLL contributes for lepton multiplicities of Landau-Levels $\sim \Phi = eBL^2$ \Rightarrow regularisation in a finite volume $V = L^3$ needed
- outgoing u_ℓ state has $s_z = 1/2$
 - \Rightarrow no spin sum for outgoing states
 - \Rightarrow neutrino momentum \parallel **B**

Free case

Alternative: Look at the energy levels of free "pions"! (in practice: two quarks in a box with imposed π -quantum numbers)

Free case – adjusted κ

change in the quark masses \Rightarrow change in $m_c!$

 \Rightarrow recompute m_c with condition

$$E_{\pi^u/\pi^d}(\mathbf{B}) \sim m - m_{c,u/d}(\mathbf{B}) = \mathrm{const}$$

in the free case: $am_{c,f}(aB) - am_{c,f}(0) \approx a^2 |q_f B|/2$

with retuned masses:

 $\begin{array}{ll} \text{Results for the spectrum} - \rho \text{-mesons } s_{z} = 0 \\ & \text{magnetic field enables mixings:} & \rho_{0}^{0,\pm} \longleftrightarrow \pi^{\pm,0} \\ & \text{mass eigenstates:} & |(\pi')^{\pm,0}\rangle = \cos(\theta) |\pi^{\pm,0}\rangle + \sin(\theta) |\rho_{0}^{\pm,0}\rangle \\ & |(\rho')_{0}^{\pm,0}\rangle = -\sin(\theta) |\pi^{\pm,0}\rangle + \cos(\theta) |\rho_{0}^{\pm,0}\rangle \end{array}$

 \Rightarrow need a correlation matrix to extract the $(\rho')_0^{\pm,0}$ mass

 $\begin{array}{ll} \text{Results for the spectrum} - \rho \text{-mesons } s_z = 0 \\ & \text{magnetic field enables mixings:} & \rho_0^{0,\pm} \longleftrightarrow \pi^{\pm,0} \\ & \text{mass eigenstates:} & |(\pi')^{\pm,0}\rangle = \cos(\theta) |\pi^{\pm,0}\rangle + \sin(\theta) |\rho_0^{\pm,0}\rangle \\ & |(\rho')_0^{\pm,0}\rangle = -\sin(\theta) |\pi^{\pm,0}\rangle + \cos(\theta) |\rho_0^{\pm,0}\rangle \end{array}$

 \Rightarrow need a correlation matrix to extract the $(\rho')_0^{\pm,0}$ mass

results for $(\rho')_0^{\pm}$ masses:

