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Motivation

Strong (external) magnetic fields

I non-central heavy Ion collisions

(∼ 1018 G → 0.02 GeV2)

I surface and interior of magnetars

(∼ 1015 − 1020 G → . 2 GeV2)

(also for results of neutron star mergers)

I the early universe

(∼ 109 G – at TQCD
C )

⇒ Properties of QCD in external magnetic fields are important!
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Motivation

Effects of external magnetic fields
I affect the spectrum of bound states

I charged particles: direct influence on masses

I neutral particles: influenced indirectly (subleading effect?)

charged vector meson condensation? [ Müller, Schramm, Schramm, MPLA 07 (1992) ]

naively: m
ρ±±

(Bcr) = 0 −→ system becomes superconducting
[ Chernodub, PRL 106 (2011) ]

I influence the thermodynamic properties of QCD!

[ review: Andersen, Naylor, Tranberg, arXiv:1411.7176 ]

I phase diagram

I equation of state

I affect decay rates!
I indirectly (change of masses and decay constants)

I directly (states of charged particles are Landau levels)

...
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Cases where spectrum and decay rates are important

I compact stellar objects:

I masses of lightest hadrons appear in EOS

I decay rates important for stability and equilibrium analyses

I cooling mechanisms: (e.g. for magnetars)

[ Duncan, Thompson, Astroph. J 392 (1992) ]

I mainly through weak decays and (inverse) β-decay (Urca processes)

I of particular relevance: pion decay!

I model building for the phase diagram and EOS:

need spectrum as input and/or for comparison!

for instance: Hadron resonance gas at finite magnetic fields
[ Endrődi, JHEP 1304 (2013) ]
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Motivation

Current status of lattice studies

I phase diagram:

rather well understood from LQCD

I phase diagram
[ Bali, et al, JHEP 1202 (2012);

Endrődi, JHEP 1507 (2015) ]

I equation of state
[ Bali, et al, JHEP 1408 (2014) ]

I spectrum: only some first quenched studies (no continuum limit)

Wilson fermions: [ Wilson: Hidaka, Yamamoto, PRD 87 (2013) ]

Overlap fermions: [ Luschevskaya et al, JHEP 1709 (2017) ]

more studies concerning magnetic moments and polarisabilities

I decay rates/decay constants no lattice studies so far!!!

actually: no full calculation for decay rates!

(only investigated changes of decay constants, e.g., in χPT)
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Motivation

Magnetic moments and polarisabilities of hadrons
external B-fields: can be used to probe structure of hadrons

energy (mass) of hadron H with B = 0 mass m and charge q:

E 2
H;n = m2 + (1 + 2n)|qB| − gHszqB − 4πmβH |eB|2 + . . . n ∈ Z+

0

gH : magnetic moment βH : polarisability

sz : spin projection on B-field (B in z-direction)

⇒ gH and βH can be extracted from spectrum at finite B

(so-called background field method [ Martinelli et al, PLB 116 (1982) ] )

polarisabilities: important to probe electromagnetic structure of hadrons

I can be compared to experimental data (mostly proton and pion)
(recent and new experiments for measurements of pion polarisabilities)

I for neutrons and other mesons: results less precise/not available
⇒ lattice can potentially decrease uncertainties and make predictions

I theoretically not well understood beyond χPT
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Lattice setup with quenched Wilson fermions

I use the (unimproved) Wilson discretisation for fermions

(advantageous for spectroscopy)

I first: work in the quenched approximation

(Nf = 1 + 1 simulations extremely difficult for Wilson fermions)

quenched spectrum reproduces QCD spectrum typically up to 10%

I 3 different lattice spacings:

a [fm] 0.125 0.093 0.062
lattice 36× 123 48× 163 72× 243

I different pion masses between 417 and 770 MeV

focus on mπ = 417 MeV (physical size mπL ∼ 3)

I different external fields up to 4 GeV2 (valence)

I will show first results with Nf = 2 + 1 in the electro-quenched setup

(configurations generated with Nf = 2 + 1 but B = 0 – RQCD)
O(a)-improved; a = 0.064 fm; mπ = 418 MeV; 64× 323
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Additive quark mass renormalisation at finite B

2. Additive quark mass renormalisation at finite B

[PoS LAT2015 (2016), arXiv:1510.03899;
PRD 97 (2018), arXiv:1707.05600]
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Additive quark mass renormalisation at finite B

Importance of additive quark mass renormalisation
Discrepancy for π0 results in the literature:

I Wilson fermions:
non-monotonous

[ Hidaka, Yamamoto, PRD 87 (2013) ]

(our results also show this)

also in Nf = 2 + 1 setup
I Overlap and staggered results:

monotonous decrease
[ Luschevskaya et al, NPB 898 (2015) ]

[ Bali, Endrődi et al, JHEP02 (2012) ]
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Wilson fermions: explicitly break full chiral symmetry

⇒ quark mass renormalises additively (shear lattice artefact)

known from QCD+QED:
additive renormalisation changes with coupling (presence of field)

[ e.g. Borsanyi, et al Science 347 (2015) ]

⇒ something similar happens for external B-fields
[ Bali, BB, Endrődi, Gläßle, PoS LAT2015 (2016) ]
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[ Bali, Endrődi et al, JHEP02 (2012) ]

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

m
(d

d
)

π
(B

)/
m

(d
d
)

π
(0

)

B [GeV2]

overlap mπ ≈ 350 − 500 MeV
dynamical staggered mπ = mphys

π
Wilson mπ ≈ 400 MeV

Wilson fermions: explicitly break full chiral symmetry

⇒ quark mass renormalises additively (shear lattice artefact)

known from QCD+QED:
additive renormalisation changes with coupling (presence of field)

[ e.g. Borsanyi, et al Science 347 (2015) ]

⇒ something similar happens for external B-fields
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Additive quark mass renormalisation at finite B

Tuning of quark masses in the interacting theory

I standard method for QCD+QED:

adjust mu/d so that pseudo-pions (πu/d) masses remain constant.
[ BMW, PRL 111 (2013); Science 347 (2015) ]

I advantage: no renormalisation needed.

I problem: disconnected diagrams present. ⇒ typically neglected

for external magnetic fields: masses will change

⇒ Method cannot be applied!

alternatives to determine mc(B):

I use: mπu/d (B)→ 0 for mu/d → 0.

I use current quark masses m̃f from Ward identities (WIs)

determine mc,f via m̃f → 0

for this: need to compute WIs for QCD+QED (not available in literature)

⇒ get new terms (QED: covariant derivative does not commute with τ i )
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Additive quark mass renormalisation at finite B

Ward identities for QCD+QED [ Bali, BB, Endrődi, Gläßle, PRD 97 (2018) ]

we have computed AWIs and VWIs for QCD+QED:
(in continuum and for Wilson fermions)

I charged WIs (d̄u and ūd) obtain new terms – even in the continuum

I advantage: disconnected diagrams do not appear
I disadvantage: vector and axial WI are needed for individual quark masses
I observe insufficient signals for charged WIs

I “neutral” WIs (ūu and d̄d): left unchanged

⇒ define “neutral” current quark masses via:

am̃u/d =
∂0

〈
(JA)

u/d
0 (x0)Pu/d (0)

〉
2
〈
Pu/d (x0)Pu/d (0)

〉
I advantage: easy to compute (standard PCAC masses)
I disadvantage:

disconnected diagrams are ignored (and anomaly terms)

⇒ unknown systematic effect in tuning
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Additive quark mass renormalisation at finite B

Determination of mc ,u/d

perform a (linear) chiral extrapolation of m̃u/d to determine mc,u/d
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(results have been checked with higher orders in (m̄ − m̄c).)
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Determination of mc ,u/d

for visualisation use:

∆mc;f (a,B) =
mc;f (a,B)−mc(a, 0)

mf (a, 0;mπ = 415MeV)

results for ∆mc;u:
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-2

-1.5

-1

-0.5

0

0.5

1

-6 -5 -4 -3 -2 -1 0 1

∆
m

c,
d

∆mc,u

β = 5.845
β = 6.000
β = 6.260



Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD

Additive quark mass renormalisation at finite B

Neutral pions on LCP(B)s
quenched setup:
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mπ = 418 MeV

⇒ tuning resolves the discrepancy

result of tuning: removal of a particular type of B-dependent lattice artefacts
(improvement scheme – but no Symanzik improvement!)

tuning of the quark mass with B:
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3. Meson spectrum and polarisabilities

[PRD 97 (2018), arXiv:1707.05600]
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Results for the spectrum – Pions
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ū/d̄

u/d

⇒ affected by subleading effects

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4

m
π

u
(B

)/
m

π
(0

)

eB [GeV2]

a = 0.124 fm
a = 0.093 fm
a = 0.062 fm

Internal structure:

π± π±

γext

d̄/ū
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Results for the spectrum – pions continuum
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LCP(B) – only a removal of lattice artefacts?
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Results for the spectrum – charged ρ-mesons sz = ±1

ρ±sz=±1: (spin 1, q = ±1)
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ρ-meson condensation: naively E = 0 when q = sz = 1 and eB = m2
ρ.

⇒ system could become superconducting [ Chernodub, PRL 106 (2011) ]

QCD inequalities: condensation cannot occur [ Hidaka, Yamamoto, PRD 87 (2013) ]

⇒ supported by our data
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Results for the spectrum – ρ-mesons continuum
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Results for the spectrum – Nf = 2 + 1

results for pions:
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Polarisabilities – quenched setup
for extraction of polarisabilities: fit the spectrum to the form

E 2
H;n = m2 + (1 + 2n)|qB| − gHszqB − 4πmβH |eB|2 + . . . n ∈ Z+

0

polarisability of πu/d :

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.03 0.06 0.09 0.12

β
π

[

G

e

V

−
3

℄

a [fm℄

πu

πd

magnetic moment of ρ+:

1.6

1.8

2

2.2

2.4

2.6

2.8

0 0.03 0.06 0.09 0.12

g ρ
+

a [fm℄

(unfortunately: volumes rather small ⇒ comparably large B)

for gρ: good agreement with χPT (≈ 2)

[ Djukanovic et al, PLB 730 (2014) ]
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Polarisabilities – effect of improvement

polarisability defined by: βH =
1

8πm

∂2E 2
H;0

∂|eB|2

∣∣∣∣
B=0

background field method: compute full derivative

dE 2
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d |eB| =
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∂|eB| −
∑
f

∂E 2
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term is a lattice artefact
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4. Pion decay constants and weak pion decay

[PRL 121 (2018), arXiv:1805.10971]
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Weak pion decay

external magnetic fields: also affects the decay rates of particles!

decay of π− into leptons:

π−

`−

ν̄`
W−

=⇒

effective four-fermi theory:

π−

`−

ν̄`

G ∼ 1
m2

W

full decay rate: Γ =

∫
dΦ

∑
<out>

|M|2

amplitude: M =
G cos(θc )√

2
ū`γ

µ(1− γ5)vν︸ ︷︷ ︸
≡Lµ leptonic

〈
0
∣∣d̄(x)γµ(1− γ5)u(x)

∣∣π−(~p = 0)
〉︸ ︷︷ ︸

≡Hµ QCD

⇒ need to compute the QCD matrix element non-perturbatively
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QCD matrix element – general form
focus on QCD matrix element:

Hµ =
〈
0
∣∣d̄(x)γµu(x)

∣∣π−(p)
〉
−
〈
0
∣∣d̄(x)γµγ5u(x)

∣∣π−(p)
〉

parameterised in terms of Lorentz (axial-)vectors (at T = 0)

I at B = 0: (available: pµ)

⇒ definition of pion decay constant fπ

I at B > 0: (available: pµ and tensor Fµν)

⇒ 3 decay constants (has been unknown before)

I for B ‖ ẑ : f ′′π does not contribute for E = 0〈
0
∣∣d̄(x)γµu(x)

∣∣π−(p)
〉

= 0〈
0
∣∣d̄(x)γµγ5u(x)

∣∣π−(p)
〉

= ie ipx fπpµ

⇒ Hµ(B) = −ie imπ(B)x0mπ(B)
[
fπ(B)δµ0 + i f ′π(B)eBδµ3

]
(π in lowest Landau level)
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I for B ‖ ẑ : f ′′π does not contribute for E = 0

〈
0
∣∣d̄(x)γµu(x)

∣∣π−(p)
〉

= ie ipx
[
i
f ′π
2
εµνρσeF

νρpσ
]

〈
0
∣∣d̄(x)γµγ5u(x)

∣∣π−(p)
〉

= ie ipx
[
fπpµ + f ′′π eFµνp

ν]

⇒ Hµ(B) = −ie imπ(B)x0mπ(B)
[
fπ(B)δµ0 + i f ′π(B)eBδµ3

]
(π in lowest Landau level)



Properties of hadrons in external magnetic fields and polarisabilities from lattice QCD

Pion decay constants and weak pion decay

QCD matrix element – general form
focus on QCD matrix element:

Hµ =
〈
0
∣∣d̄(x)γµu(x)

∣∣π−(p)
〉
−
〈
0
∣∣d̄(x)γµγ5u(x)

∣∣π−(p)
〉

parameterised in terms of Lorentz (axial-)vectors (at T = 0)

I at B = 0: (available: pµ)

⇒ definition of pion decay constant fπ

I at B > 0: (available: pµ and tensor Fµν)

⇒ 3 decay constants (has been unknown before)
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Pion decay constants and weak pion decay

QCD Amplitude – decay constants for B > 0
dynamical staggered quarks:
pion mass: mπ = 135 MeV
(setup: [ Bali, Endrődi, JHEP 1202 (2012) ] )

quenched Wilson quarks:
pion mass: mπ = 417 MeV
(setup as before)

fit functions:

fπ(B)

fπ(0)
=
[
1 + c1|eB|

] mπ(0)

mπ(B)

f ′π(B)

fπ(0)
=
[
d0 + d1|eB|+ d2|eB|2

] mπ(0)

mπ(B)

for small magnetic fields: f ′π = 0.10(2) GeV−1 + O(B)
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Pion decay constants and weak pion decay

Full decay rate [ PRL 121 (2018), arXiv:1805.10971 ]

Γ(B)

Γ(0)
=

f 2
π (B) + [f ′π(B) eB]2

f 2
π (0)

·
[
1− m2

`

m2
π(0)

]−2

· 2 |eB|
mπ(0)mπ(B)

(valid: eB � m2
`; LLL approximation exact: eB > m2

π(0)−m2
`(0))

dominant π−-decay channel:

π− → µ− + ν̄µ

(decay fraction 99.98%)

enhanced by factor ≈ 50
at eB ≈ 0.3 GeV2

(Wilson: rescaled to mπ = 135 MeV)

typical B > 0 lifetime: τπ = 5 · 10−10 sec at B ≈ 0.3 GeV2/e= 5 · 1015 T
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Pion decay constants and weak pion decay

Full decay rate [ PRL 121 (2018), arXiv:1805.10971 ]

Γ(B)

Γ(0)
=

f 2
π (B) + [f ′π(B) eB]2

f 2
π (0)

·
[
1− m2

`

m2
π(0)

]−2

· 2 |eB|
mπ(0)mπ(B)

(valid: eB � m2
`; LLL approximation exact: eB > m2

π(0)−m2
`(0))

subdominant π−-decay channel:

π− → e− + ν̄e

(decay fraction 0.012%)

enhanced by factor ≈ 10
at eB ≈ 0.3 GeV2

change of mass m`

typical B > 0 lifetime: τπ = 5 · 10−10 sec at B ≈ 0.3 GeV2/e= 5 · 1015 T
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Summary

I Spectrum and decay rates for B > 0: important quantities

(particularly interesting for astrophysical applications)

I Quenched lattice results in the continuum:

I π± and ρ±∓ masses increase as for point particles
I π0 masses decrease down to 60% of mπ(0)
I ρ±± masses decrease but remains > 0 ⇒ no ρ-meson condensation!?

I key ingredient: tuning of mq with B for Wilson fermions

I new decay constants appear for B > 0
(here: example of π±; same happens for π0, K±,0, . . .)

we have measured the new decay constants on the lattice

I weak π± decay: drastically enhanced (much smaller lifetimes)

I Future prospects:

I look at other decays (Urca processes, . . .)
I compute polarisabilities
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Thank you for your attention!
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Results for the spectrum – continuum extrapolations

unimproved Wilson fermions ⇒ lattice artefacts of O(a)

here: perform linear continuum extrapolations in a

check for relevant higher order terms:
use only two smallest lattice spacings for extrapolation

⇒ included in systematic error
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Changes to perturbative computation [ PRL 121 (2018), arXiv:1805.10971 ]

π−

`−

ν̄`

I external states for π− and `− at finite B: so called Landau levels

energies lepton: En,kz ,sz =
√

(2n + 1 + 2sz)eB + k2
z + m2

`

lowest Landau level (LLL): n = 0, sz = −1/2

energy conservation: eB > mπ(0)2 −m2
` only LLL contributes for lepton

multiplicities of Landau-Levels ∼ Φ = eBL2

⇒ regularisation in a finite volume V = L3 needed

I outgoing ν` state has sz = 1/2

⇒ no spin sum for outgoing states

⇒ neutrino momentum ‖ B
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Free case
Alternative: Look at the energy levels of free “pions”!
(in practice: two quarks in a box with imposed π-quantum numbers)

B ū u
~s ~µ

πu

⇒ Eπu/πd = 2mu/d

ud̄
π+

⇒ Eπ± = mu +
√

md + 2|qdB|
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⇒ Quark mass changes with magnetic field!
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Free case – adjusted κ
change in the quark masses ⇒ change in mc !

⇒ recompute mc with condition

Eπu/πd (B) ∼ m −mc,u/d(B) = const

in the free case: amc,f (aB)− amc,f (0) ≈ a2|qfB|/2

with retuned masses:
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Results for the spectrum – ρ-mesons sz = 0

magnetic field enables mixings: ρ0,±
0 ←→ π±,0

mass eigenstates:
∣∣(π′)±,0〉 = cos(θ)

∣∣π±,0〉+ sin(θ)
∣∣ρ±,00

〉∣∣(ρ′)±,00

〉
= − sin(θ)

∣∣π±,0〉+ cos(θ)
∣∣ρ±,00

〉
⇒ need a correlation matrix to extract the (ρ′)±,00 mass

plateaus after diagonalisation:
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