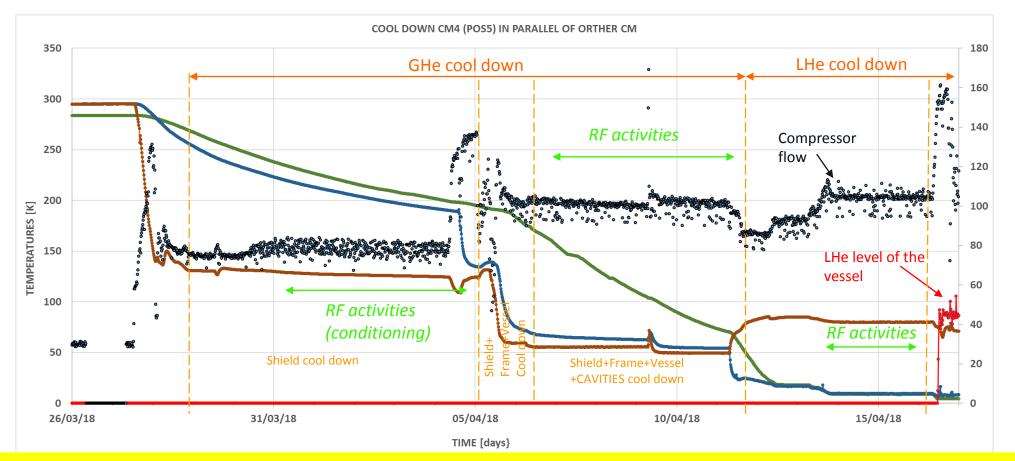

Status of HIE ISOLDE: SC linac commissioning and production of spare cavities set

W. Venturini Delsolaro

On behalf of the HIE ISOLDE teams

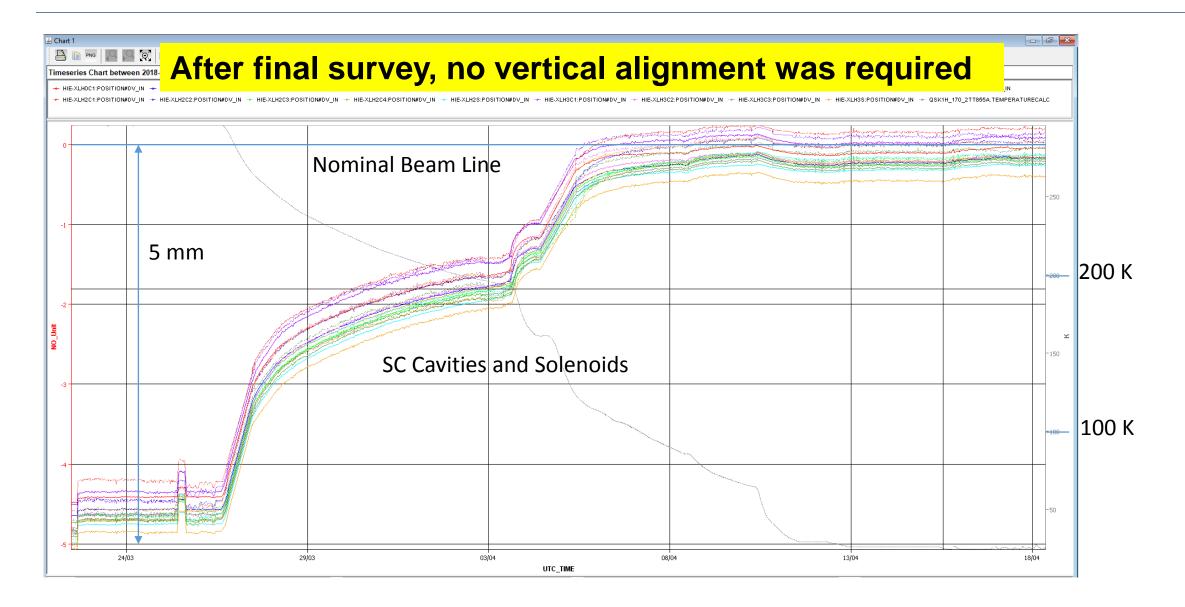
82nd ISOLDE Collaboration Committee meeting, CERN, 26 June 2018

HIE ISOLDE phase II completed

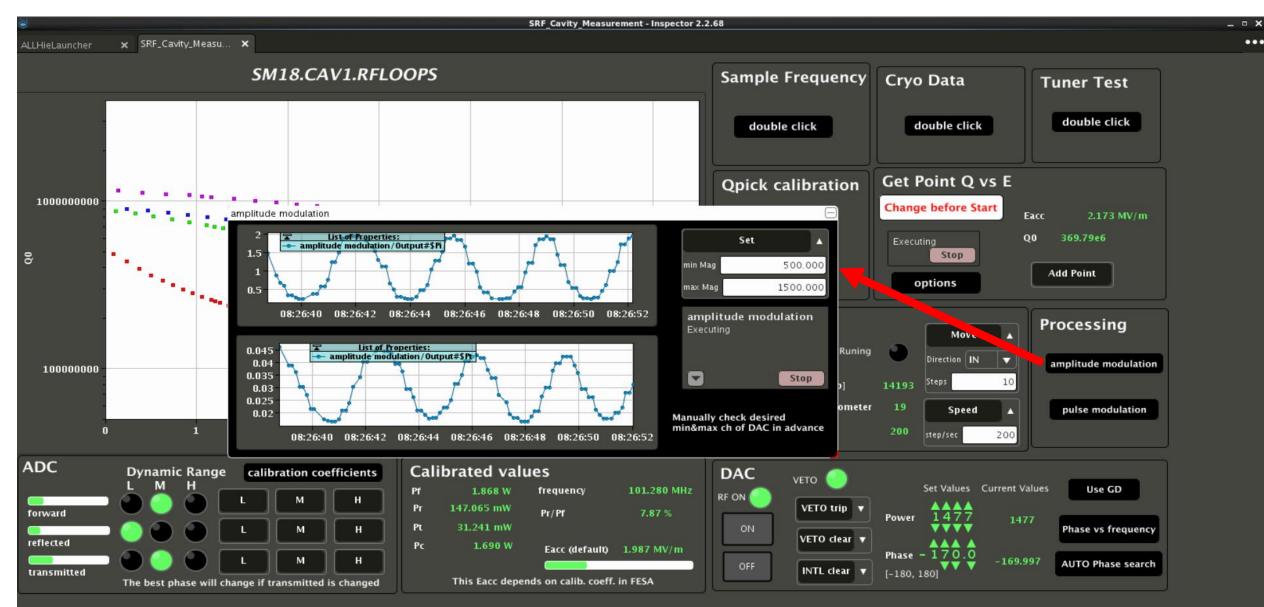


Hardware commissioning sequence

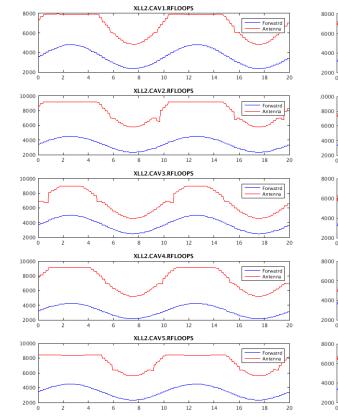
- 1 INTERLOCK TESTS
- 2 SLOW PUMP DOWN
- 3 RF, INSTRUMENTATION AND ELQA CHECKS BEFORE COOL DOWN
- 4 LLRF TESTS
- 5 COOL DOWN
- 6 ALIGNMENT MONITORING AND CORRECTION
- 7 RF CONDITIONING ABOVE TC
- 8 RF TESTS AT COLD
- 9 SOLENOID TESTS
- **10 HEAT LOAD MEASUREMENTS**
- 11 THERMAL CYCLES

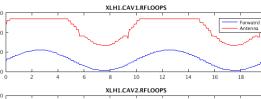

2018 hardware commissioning campaign finished on time

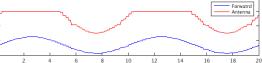
Overview of 2018 cool down with 4 CM

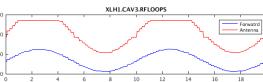


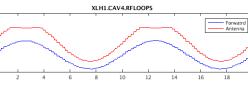
- Repairs of cryogenics distribution line during winter stop have paid off
- Full cool down from room T in ~ 3 weeks, including stop for RF conditioning
- Optimization of thermal gradients... almost right ;-)
- Anomalous static heat load in CM2, still not understood

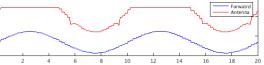

Monitoring vertical positions during cool-down

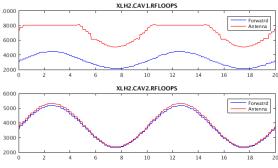


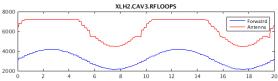

Cavity processing: amplitude modulation for MP cond.

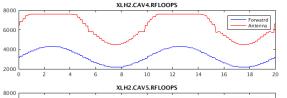


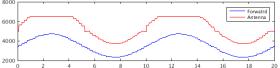

Multipacting conditioning above Tc

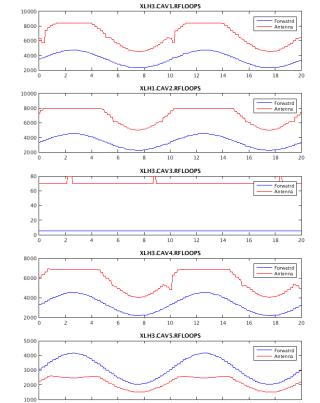


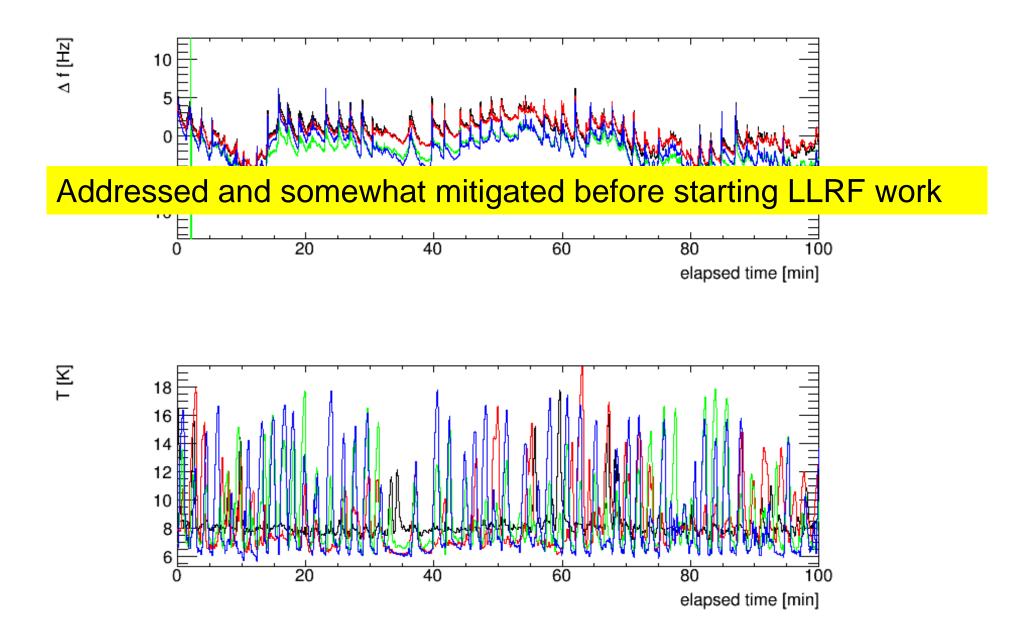


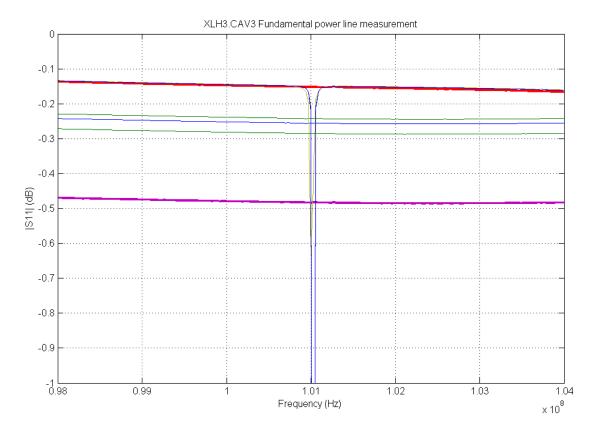




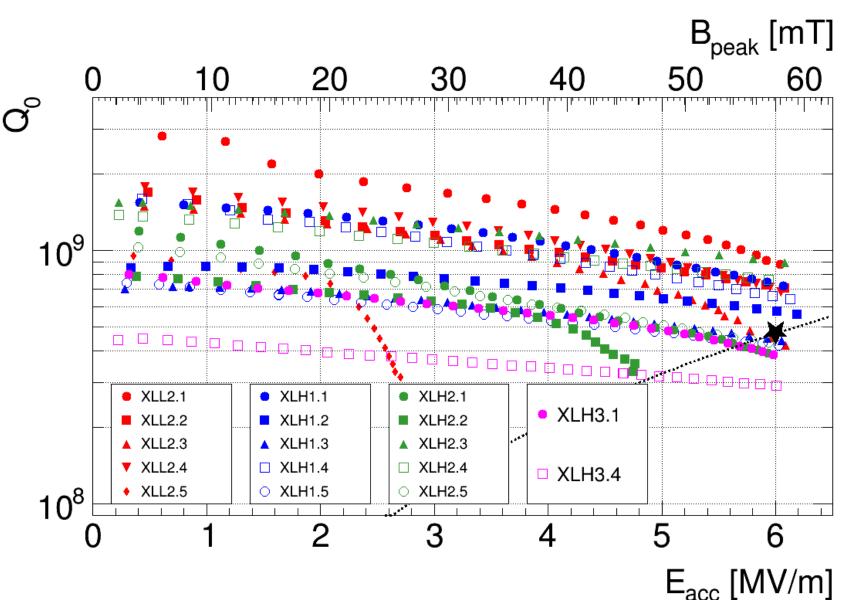







12 14 16

Cavity detuning and cryo-plant tuning up



XLH3.CAV3 anomaly

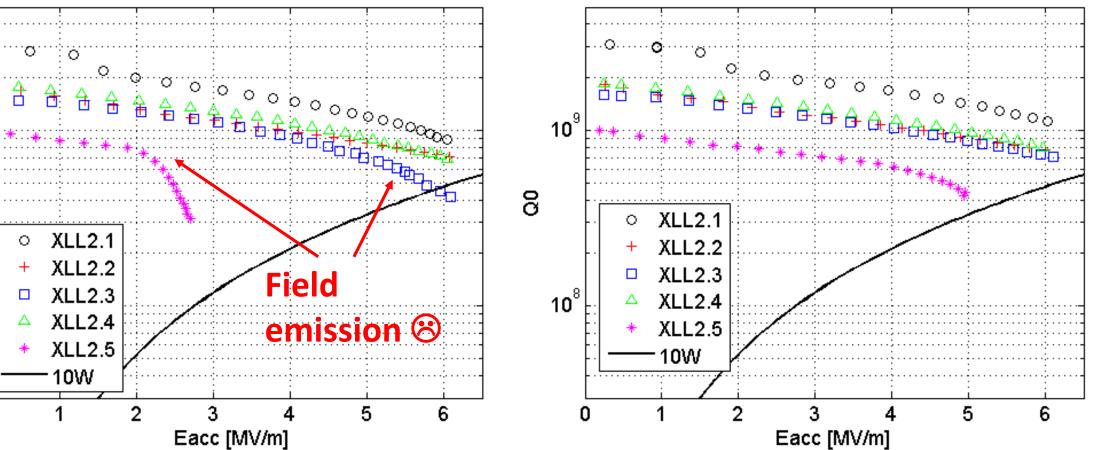
- After cool down to 200 K it turned out, it is not possible to inject power into Cavity 3 of CM4
- · Warm measurement were normal
- Investigations narrowed down the problem to the connection to the fundamental power coupler
- There is a range of states from good contact and power passing, through 3dB dissipated in the fault to full reflection
- We decided not to put power in this cavity: the risk is to contaminate the whole cryomodule in case of release of material in the common vacuum

Cavity performances

- Cool down gradients over Tc less favourable than in the past
- Most cavities reaching 6 MV/m above specified Q
- 3 cases of field emission (one new). For the moment, no He processing
- CAV3 of CM4 will not be used in 2018

10⁹

10⁸

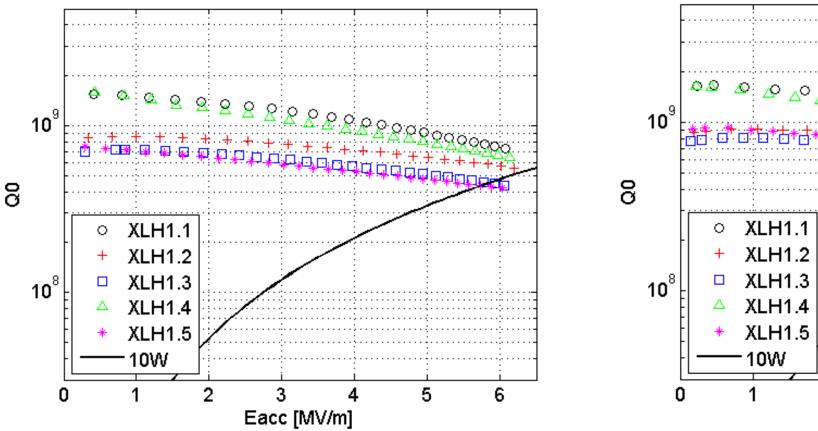

0

8

Last year

Q0 vs Eacc of LINAC cavities

Q0 vs Eacc of LINAC cavities

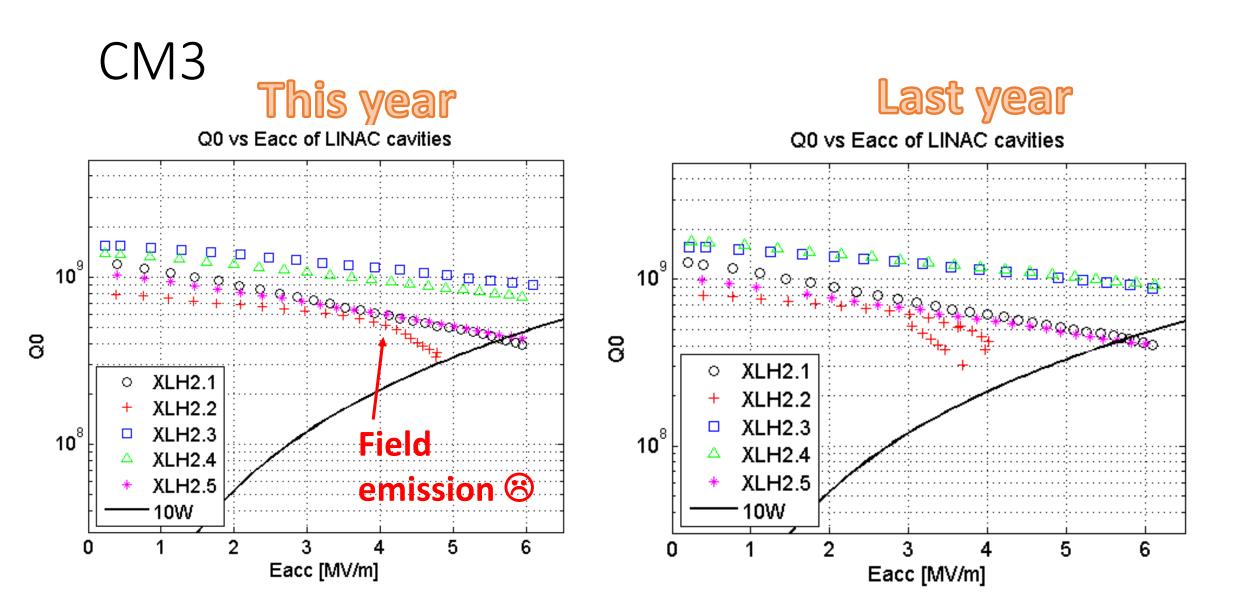


Performance is comparable but contamination produced when coupler was changed at the end of 2015 is still present and a different cavity shows field emission

Q0 vs Eacc of LINAC cavities

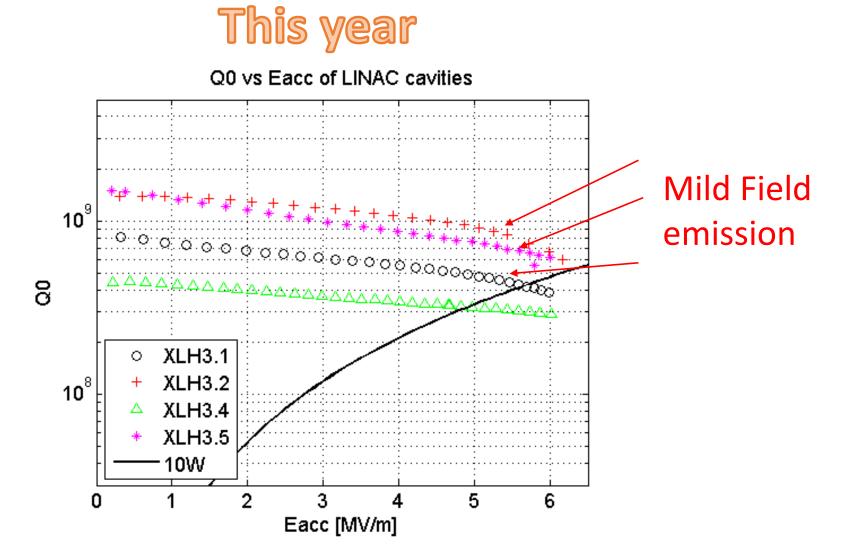
Q0 vs Eacc of LINAC cavities

2

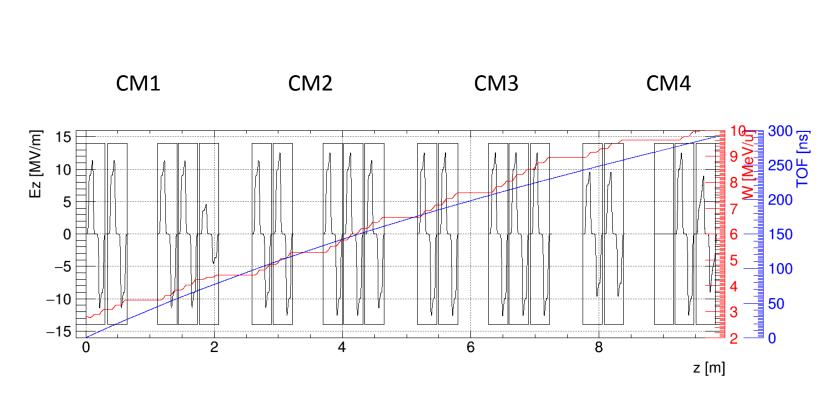

3

Eacc [MV/m]

5


6

Comparable result (slightly worse Q caused by slightly worse cool down)



• Comparable result (slightly worse Q caused by slightly worse cool down)

CM4

- XLH3.3 was not powered due to the doubtful RF contact at the coupler
- The other cavities reach 6MV/m, with mild field emission. Not an issue for LLRF

2018 settings & beam dynamics

- 10.172 MeV/u for A/q=3.0 expected
- 7.7 MeV/u for A/q=4.5
- Further adjustments of LLRF loops after reliability assessment

cavity	proposal	Achieved [MV/m]						
	[MV/m]							
XLL2.1	5	5						
XLL2.2	5	5						
XLL2.3	5	5						
XLL2.4	5	5						
XLL2.5	2	2						
XLH1.1	5.5	5						
XLH1.2	5.5	5						
XLH1.3	5.5	5						
XLH1.4	5.5	5						
XLH1.5	5.5	5						
XLH2.1	5	5.5						
XLH2.2	4	5.5						
XLH2.3	5	5.5						
XLH2.4	5	5.5						
XLH2.5	5	5.5						
XLH3.1	5	4.2						
XLH3.2	5	4.2						
XLH3.3	0	0						
XLH3.4	5	5.5						
XLH3.5	5	4						

CONTROL LINE SETPOINT MAG [MV/m] PHASE [deg]							SEQ STATUS	SETP MAG [MV/m]	PHASE	CAV I MAG [MV/m]	FIELD PHASE [deg]	RF PO FWD [W]	WER RFL [W]	STATUS LIMIT RF OUT FAST C SATUR ILOCK D	av T NSS [W] T	r cab [K] r cav [K]	He LEV VESSEL [%]	DETAILED STATUS
	CAV1	OFF	STANDBY	READY	ON	Set Mag A Set Ph A 5.000 -53.0	ON	5.000	-53.0	5.001	-49.6	57.3	51.5		2.7	55.4 4.6	50.2	State ON reached
	CAV2	OFF	STANDBY	READY	ON	Set Mag A Set Ph A 3.000 60.0	ON	3.000	60.0	3.000	77.6	36.5	32.4		1.1	50.6 4.6	50.3	State ON reached
XLL2	CAV3	OFF	STANDBY	READY	ON	Set Mag Set Ph ▲ 5.000 -45.0	ON	5.000	-45.0	4.999	7.0	54.6	47.1		4.8	61.7 4.6		- State ON reached
	CAV4	OFF	STANDBY	READY	ON	Set Mag Set Ph 5.000 -110.0	ON	5.000	-110.0	4.999	-93.4	50.2	42.6		3.7	63.8 4.6	51.1	State ON reached
	CAV5	OFF	STANDBY	READY	ON	Set Mag Set Ph 2.000 140.0	ом	2.000	140.0	2.001	-170.7	9.1			0.7	58.0 4.5		State ON reached
	CAV1	OFF	STANDBY	READY	ON	Set Mag Set Ph ▲ 3.000 76.0	ON	3.000	76.0	2.999	116.4	105.9	104.0		1.0	25.2 4.6		State ON reached
	CAV2	OFF	STANDBY	READY	ON	Set Mag Set Ph 6.000 5.0	ON	6.000	5.0	5.998	63.2	80.3	67.0		8.3	32.6 4.8	51.9	State ON reached
XLH1	CAV3	OFF	STANDBY	READY	ON	Set Mag Set Ph 5.500 68.0	ON	5.500	68.0	5.497	121.9	64.9	52.0		8.4	27.1 4.8		- State ON reached
	CAV4	OFF	STANDBY	READY	ON	Set Mag Set Ph 5.000 -38.0	ON	5.000	-38.0	5.000	32.4	93.4	82.9		4.2	29.3 4.6	49.6	State ON reached
	CAV5	OFF	STANDBY	READY	ON	Set Mag Set Ph ▲ 3.000 47.0	ON	3.000	47.0	2.998	57.2	19.3	16.2		2.0	23.0 4.6	45.0	State ON reached

			LIM	CONTRO NE	L	SETPOINT MAG [MV/m] PHAS	E [deg]	SEQ STATUS	RUNNING	SETPC MAG [MV/m]	DINT PHASE [deg]	CAV F MAG [MV/m]	FIELD PHASE (deg)	RF PO FWD (W)	WER RFL [W]	STATUS	CAV ¹ DISS [W] 1	T CAB [K] T CAV [K]	He LEV VESSEL [%]	DETAILED STATUS
	CAV1	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I 5.000	2 h ▲ 0.0			5.000	0.0	4.999	39.6	45.2	35.2		6.7	95.7 4.6	50.0	State ON reached
	CAV2	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I 5.000	Ph ▲ 0.0			5.000	0.0	4.999		54.5	44.8		11.6	70.2 4.7	50.0	State ON reached
XLH2	CAV3	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I 5.000	Ph ▲ 0.0			5.000	0.0	5.000	10.3	124.2	113.1		3.3	76.2 4.6		State 0N reached
	CAV4	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I	Ph ▲ 0.0			5.000	0.0	5.000	24.8	48.8	42.4			61.0 4.6	48.3	State ON reached
	CAV5	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I	Ph ▲ 0.0	ON		5.000	0.0	5.001	59.4	49.7	40.4		6.5	72.5 4.6	10.0	State ON reached
	CAV1	OFF	STANDBY	READY	ON	Set Mag A Set I 2.000	2 h ▲ 0.0			2.000	0.0	1.999	71.5		51.8		0.8	62.7 4.6		State ON reached
	CAV2	OFF	STANDBY	READY	ON	Set Mag A Set I	Ph ▲ 0.0			2.000	0.0	1.999	88.0	54.6	52.9		0.4	65.1 4.5	50.4	State ON reached
XLH3	CAV3	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I	Ph ▲ 0.0			1.000	0.0	0.002	-65.6	0.0	0.0		-0.0	50.4 4.5		State OFF reached
	CAV4	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I 2.000	Ph ▲ 0.0			2.000	0.0	2.001	34.8	36.4	32.5		1.3	50.1 4.6	51.0	State ON reached
	CAV5	OFF	STANDBY	READY	ON	Set Mag 🔺 Set I 2.000	Ph ▲ 0.0			2.000	0.0	2.003	74.3	54.7	5 1.8			64.4 4.5	51.0	State ON reached

Tuesday 29 May at 16:30: first beam through the full linac: mechanical aperture is clear!

Proposed intervention for XLH3.CAV3

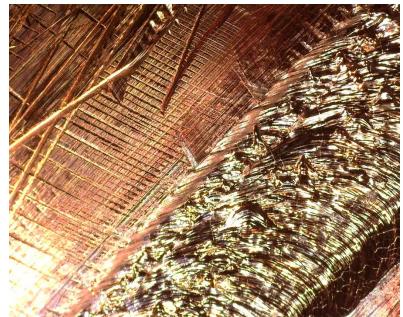
- Bring back the cryomodule #4 to SM18, open and repair the cable
 - Dis-installation, transport to SM18 (right after physics run?)
 - Conditioning for ISO5, slow venting
 - Repair works in clean room
- Profit to replace some of the cavities with the best spares
 - Spares will be prepared prior to the intervention (minimise "open" time)
 - Anyway advisable to LPW rinse all cavities (\rightarrow dismounting)
- Possibly cold test the cryomodule in M9 bunker

Required resources, schedule constraints, risks if not done

Required resources (estimates based on experience with CM1 refurbishment):

BE-OP: coordination of de-installation and re-installation BE-RF: coordination, clean room assembly work, rinsing, RF testing in SM18 (Core FTE) EN-HE: roof shielding removal, handling, special transport (~ 10 days* EN-SMM: survey/alignment in clean room and in the linac (Core 22 June 1997) HSE-RP: radiation verification (very low dose rate) (Core 22 June 1997) TE-CRG: disconnection in linac, cool down (Core 20 Open) TE-VSC: disconnection, controlled (Core 20 Core) TE-MSC: advise, assistant (Core 20 Core) TE-MSC: advise, assistant (Core 20 Core) EDOORSE (Core) Sector (C

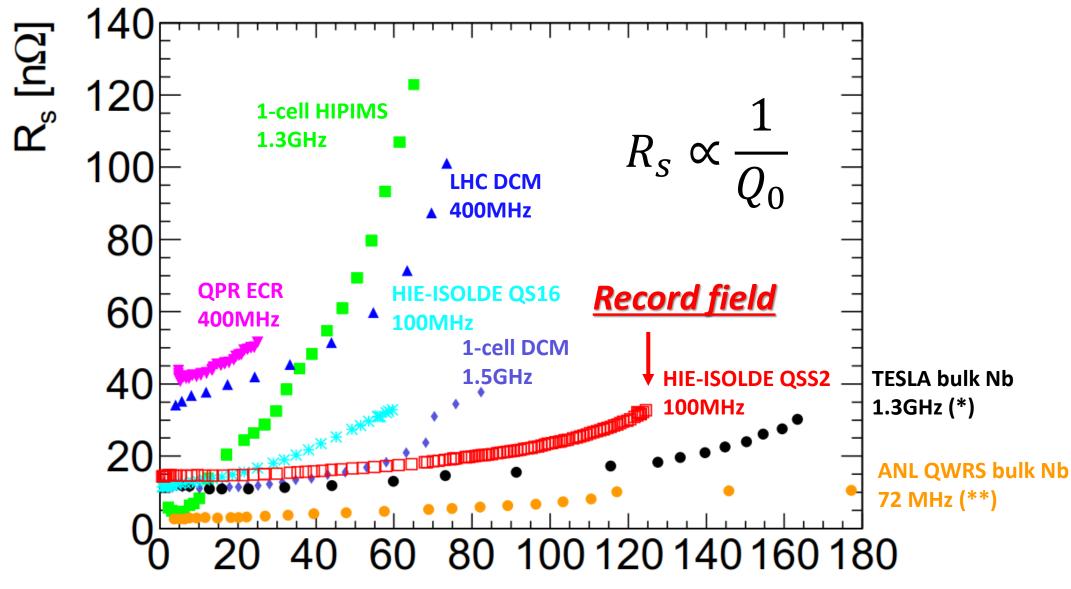
Scheduling aspect ...onstraints:


Time for preparation: (finalization of spare cavity set by May 2019) Time for dis-installation and transport: ~2 weeks (special transports take 1 day) Time for intervention in clean room: 5+2 weeks Time for re-qualification: (cold test in M9): 6 weeks (with SM18 cryogenics availability) Time for re-installation: ~3 weeks → About 4 months: may start anytime between May and October 2018

Risks if not done: Physics program at 10 MeV/u with A/q=4.5 would be compromised

Spare cavities

- QSS2, QS18, QS20 are fully qualified as spares
- QS20 has the lowest Q, it could be stripped and re-coated
- QSS3 substrate delivered at CERN and just accepted → to be processed
- The fifth spare cavity should come from either QS6 or QS18, both substrates are in bad conditions
- A fourth seamless substrate will be ordered (raw material is available, pending acceptance)



Summary

- HIE ISOLDE phase II is deployed
- The 2018 commissioning campaign is over, machine is operational
 - Anomalous static heat load in CM2... not understood
 - Issue with CAV3 of CM4: not a showstopper for 2018, when enough experiments are within the energy reach of the machine
 - An intervention during LS2 was requested and got first approval by LS2C
 - BE-RF manpower for intervention is to be "shared" with crab cavities (High Luminosity LHC) and LHC spares programs
 - BE management reserved to see 2018 operations before final decision
- Spare cavities production is in progress, already 3 units are secured

Seamless HIE ISOLDE Cavity \rightarrow world record for Nb/Cu

B

'peak

*L. Lilje "State of the art SRF cavity performance" Proceedings of LINAC 2004, Lübeck, Germany ** Z.A. Conway et al, NIM B 350 (2015) 94-98