A new storage ring at ISOLDE (ISR): reminder on the physics cases

KLAUS BLAUM Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany

World-wide storage rings

(*T*_{1/2} > 1μs)

Masses, lifetimes

Reaction studies, spectroscopy

ISOLDE would become a unique facility with the world-only ISOL storage ring. (different radionuclides, $T_{1/2} > 5$ ms)

In-ring measurements

Energie in MeV

Measurements using internal target

p-capture

Direct measurement of (p,γ) or (α,γ) rates (³He,d) as surrogate of (p,γ)

Galactic abundance of γ-ray emitter ²⁶Al Measure ^{26m}Al(d,p)²⁷Al transfer reaction

X-ray bursts (rp-process)

Supernovae (r-process)

External target: beam extraction

- Extraction times can be reduced to ~ 1s
- Efficiency (cooled beam) ≈70%
- Properties similar to those of the cooled beam

probe tensor interaction: N=82 using ¹⁴⁶Gd, ¹⁴⁸Dy, ¹⁵⁰Er (d,p) N=126 using ²⁰⁶Hg, ²¹²Rn, ²¹⁴Ra (d,p) pear-shaped nuclei for EDM ²²⁵Ra(d,d')

Summary

Several HIE-ISOLDE research areas will strongly benefit from the ISR.

New opportunities, particularly nuclear astrophysics, will come from the ISR.

ISR can be (almost) integrated in the existing building (see talk by Manfred Grieser).

Spare slide

