A preliminary design for a compact storage ring and possible integration into the HIE-ISOLDE hall

Manfred Grieser

Max Planck Institut für Kernphysik, Heidelberg

82nd ISOLDE Collaboration Committee meeting, 26th June 2018

Proposed TSR@ISOLDE project

to store radioactive ions for nuclear physics experiments it was proposed to move TSR located at MPI for nuclear physics to ISOLDE.

TSR @ HIE-ISOLDE

HIE-ISOLDE

Approx 3m higher than Isolde hall floor

10m (7m between floor and crane hook)

tilted beam-line coming from the HIE-ISOLDE machine. possible TSR installation above the CERN cable-tunnel. (E. Siesling)

00

TSR@HIE-ISOLDE building

30m

Time-line of the TSR@ISOLDE project

TSR@ISOLDE workshop at MPI-K Heidelberg evaluated the future for TSR Oct 2010

ISOLDE and Neutron Time-of-Flight Committee endorsed Jan 2012

TSR technical design report 129 co-authors (47 institutions)

EPJ Special Topics 207 1-117 May 2012-

Approved by CERN Research board, May 2012

"The installation of TSR, as an experiment to be included in the HIE-ISOLDE programme, was approved by the Research Board.

The timescale will be defined once the study of its Integration has been completed."

K. Blaum, Y. Blumenfeld, P.A. Butler, M. Grieser, Yu.A. Litvinov, R. Raabe, F. Wenander and Ph.J. Woods (Eds.) Storage Ring Facility at HIE-ISOLDE

Presentation of the integration study to the CERN Research Board Nov 2013

Several TSR@ISOLDE workshops at CERN: 2012, 2014, 2015

Updated CERN integration study with report to the CERN directorate 2016

CERN director general: decision about the TSR@ISOLDE project is postponed until 2020/2021 (after second LHC upgrade) August/September 2016

MPIK cannot hold TSR at MPIK until 2020/2021 without getting green light from CERN

Design Criteria of the new storage ring

a) storing ions up to 238 U with 10 MeV/u. \Rightarrow maximum rigidity of the ring: B $\rho_{max} \approx 1.5$ Tm.

b) <u>storing of heavy daughter nuclei</u> up to a certain rigidity deviation ($\Delta B\rho/B\rho$) created in nuclear reactions should be possible.

c.) <u>daughter nuclei</u> with large transversal momenta <u>focused at the detector position</u>.

d.) <u>storing ring should be compact</u> to fit in the present HIE Isolde hall.

Layout of the new storage ring

with straight section Length L=3.5 m and circumference C=42.4 m

Twiss parameter of the storage ring (S=2)

B-function

with $D_x=0$ m in the gas target to avoid excitation of betatron oscillations of the daughter nuclei produced in nuclear reactions

 \Rightarrow open-up the possibility to store daughter nuclei produced in nuclear reactions

dispersion

ECOOL Stacking

A combination of multi-turn injection and electron cooling stacking will be used to fill the storage ring with particles

Space charge limit due to incoherent tune

maximum possible stored ion number: $N_s = \frac{A}{q^2} \frac{2\pi}{r_n} \cdot B \cdot \beta^2 \cdot \gamma^3 \cdot \epsilon \cdot (-\Delta Q)$ $-\Delta Q$ - possible incoherent tune shift for B=1 at TSR: $-\Delta Q \approx 0.065-0.1$ for an electron cooled ion beam: $\varepsilon \propto \left(\frac{q^4}{A^2} \frac{N_s}{\lambda_{Cool}} \frac{1}{\beta^3}\right)^{0.44}$ $\lambda_{cool} \propto n_e \frac{q^2}{A}$ $n_e \propto \beta^2$ Isolde storage ring (ISR) has similar possible incoherent tune shifts incoherent tune shift for an electron cooled ion beam Measured space charge limit of an electron $N_{s} = \operatorname{const} \frac{(A^{33}/E^{3})^{1/28}}{\alpha^{2}}$ cooled ion beam at the TSR E (MeV) measured N_s calculated N. Ion E-ion energy in MeV $5.4 \cdot 10^9$ $4.1 \cdot 10^{9}$ 21 p A-ion mass $16O^{8+}$ $9.4 \cdot 10^8$ $1.3 \cdot 10^9$ 98 q-ion charge state $12C^{6+}$ 73 $1.7 \cdot 10^9$ $1.7 \cdot 10^9$ $32S^{16+}$ $9.5 \cdot 10^8$ $6.3 \cdot 10^8$ 195 TSR experiments: const $\approx 7 \cdot 10^9$ ³⁵Cl¹⁷⁺ $5.8 \cdot 10^8$ 293 $5.1 \cdot 10^{8}$

 \Rightarrow maximum possible Luminosity (L= $\frac{R}{\sigma}$)

for
$$N_0 = N_s$$

approximately valid for ISR

Q

Effective Luminosity of some selected ions

 $L_{eff} = \eta N_0 f_0 n_t$ calculated for the space charge limit ($N_0 = N_s$) and a beam life time $\tau = 1-1.5s$

beam	Energy (MeV/u)	$\mathbf{q}_{\mathbf{s}}$	\mathbf{N}_{s}	target	n _t (atoms/cm ²)	τ (s)	N _i /T (1/s)	L _{eff} (1/cm ² s)	η=0.5
⁸⁶ Kr ³⁶⁺	10	36+	3.10^{8}	H_2	9·10 ¹⁴	1.5	3·10 ⁸	$2 \cdot 10^{29}$	proton
⁹⁶ Ru ³⁹⁺	10	39+	3.10^{8}	H_2	$4 \cdot 10^{14}$	1	3·10 ⁸	8.10^{28}	- capture
¹⁹⁶ Hg ⁶⁴⁺	10	64+	2.10^{8}	H ₂	5·10 ¹³	1.5	2.10^{8}	8·10 ²⁷	reactions
²³² Th ⁷¹⁺	10	71+	2.10^{8}	H ₂ ,D ₂	$5 \cdot 10^{13}$	1	2.10^{8}	8·10 ²⁷	
²³⁸ U ⁷²⁺	10	72+	2.10^{8}	H ₂ ,D ₂	3·10 ¹³	1.5	2.10^{8}	5.10^{27}	fission
²³² Th ⁷¹⁺	10	71+	2.10^{8}	He	$3 \cdot 10^{12}$	1	2.10^{8}	$4 \cdot 10^{26}$	reactions
238U ⁷²⁺	10	72+	2·10 ⁸	Не	$2 \cdot 10^{12}$	1	2.10 ⁸	3.10^{26}	
injection cha green: bare io black: equilit state a strippo	rge state on orium charg after HIE-IS er	e OLDE	N _s -space of an ele stored io	charge l ctron coc n beam	imit r pled n _t -ta for a	equired injeo rget thickne beam life ti	ction rate ss calcula me: τ=1-	e (ions/s) ated 1.5s	for N ₀ =N _s

remark: H_2 , D_2 , He target: limitation of $n_t \approx 10^{14}$ atoms/cm² all required injection rates N_i/T for the space charge limit N_s maybe can not be reached

Storing of daughter nuclei produced in nuclear reactions

Electron cooling separates the daughter nuclei from the stripped ion beam and main ion beam.

example proton pick-up reaction: $Hg^{64+} + p \rightarrow Tl^{65+} + \gamma$

L- luminosity s- cross section τ_d - life time of daughter nuclei

In the equilibrium: number of daughter nuclei:

 $N_{d,0} {=} \sigma L \tau_d$

example: ¹⁹⁶Hg⁶⁴⁺,E/A=10 MeV/u $N_0 \approx N_s/6=3.10^7$ $n_t=2.10^{13}$ atoms/cm²

 $\Rightarrow L=2.210^{27} 1/cm^2 s,$ $\tau_d \approx 3.5 s$

for: σ =0.01 barn :

 $N_{d,0} \approx 80$

Direct detection of produced daughter nuclei

Multi Charge operation of the TSR

- Storing also daughter nuclei after production needs a relative large momentum acceptance of the storage ring
- At the TSR it was shown that several beams with different rigidities can be stored at the same time
 Confirmation of the multi charge operation at the TSR

Schottky noise measured 12 s after injection

Possible location of the new storage at HIE-ISOLDE

transparency from Erwin Siesling and Stephane Maridor, CERN

Acknowledgement

Klaus Blaum, MPI für Kernphysik, Heidelberg Jan Borburgh, CERN, Geneva Beatriz Jurado, CENBG, Gradignan Stephane Maridor, CERN, Geneva Akira Noda, NIRS, Chiba Erwin Siesling, CERN, Geneva Fredrik Wenander, CERN, Geneva

Appendix

Preliminary cost table

	Cost	Manpower	remark			
	kCHF	FTE				
Infrastructure						
Civil engineering (hall extension)	1000) 1				
Ventilation	1700) 1				
Water cooling system	1200) 1				
Cabling and electrical infrastructure	500	0.5				
Compressed air	15	0.05				
Fire detection system	120	0.1			costs kCHF	Manpower FTE
Crane+tooling	C) ()		infrastructure	453	5 3.65
Storage Ring						
Alignment and survey	170	0.35				
Beam diagnostics	2500) 5				
Applications	300) 1				
Control system	100) 1				
Project management		3				
E-cooler	1500) 4	based	on ELENA cooler		
General safety	0.5	0.5				
Injection line	200	0.5				
Injection-Extraction septum	200) 1				
Magnets	2500) 5				
Magnet Interlocks	100	0.1				
Power supplies	2777	10				
Radiation protection	100	0.05				
RF	274.2	2.8				
Stepper motor and Scrapers	2	0.1				
Vacuum System	3500) 6				
Commissioning		2		storage ring costs	14223.	7 42.4
In-ring experiments covered by the ISO	LDE collaboration					
Extraction line covered by the ISOLDE	collaboration					
total	18758.7	46.05				

ISR Spectrometer

example

investigation of nuclear reaction (reaction data: B. Jurado)

 $^{238}U^{72+}(d,d')^{238}U^{72+}$

 $^{238}U^{72+} \rightarrow ^{238}U^{72+} + \gamma$ | reaction daughter nuclei with $^{238}U^{72+} \rightarrow ^{237}U^{72+} + n \quad [relative large emittances]$

