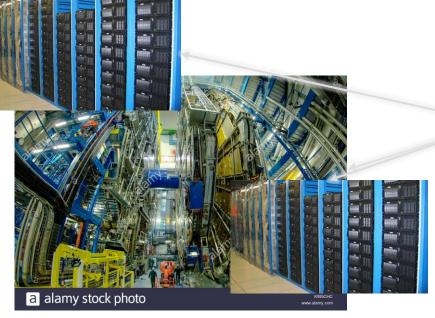


Machine Learning applied to CERN Industrial Control Systems


Fernando Varela

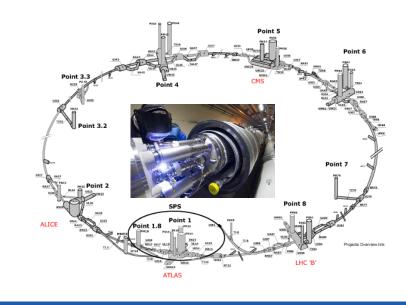
Industrial Controls and Safety Group Beams Department, CERN

Industrial Control systems

Must ensure the safe and coherent operation of all part of the system under control, e.g. ATLAS

Control System

Various TB per day



LHC Cryogenics Controls

- Keep magnets under superconductivity condition
 - electric current passes almost without resistance
 - temperature dependency
 - Cooling power much cheaper than the Joule effect !!!

- Liquid helium bathing the LHC's magnets cooled down to 1.9K
- Over 34000 physical instrumentations and channels
 - 12136 AI, 4856 AO,4536 DI,1568 DO
 - 8000 spare and virtual channels
 - 4000 analogical control loops
- More than 120 PLCs
 - Siemens S7-416-2DP
 - 30000 conceptual objects/parameters

F. Varela

Anomaly detection

A number of anomalies cannot be detected by the control systems!

Possible causes:

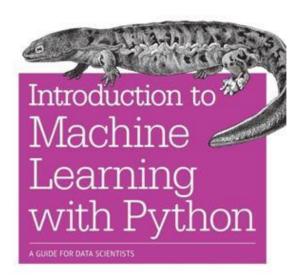
- hardware failures/degradations
- wrong tuning/structure
- false measurements...

Impact

- Process stability and safety
- Maintenance (overuse of valves)
- Performance and downtime

Why data analytics?

- Too complex to embed calculations into the control systems
- Learn from historical data the group of signals with similar behaviour



F. Varela 5/6

Learning Objectives

- What are Industrial Control Systems?
- What they are made of?
- How can we exploit their archive data to render them "smart"?
 - A first exposition to Python and Machine Learning techniques

O'REILLY'

Andreas C. Müller & Sarah Guido

BACK UP SLIDES

F. Varela

8/6

Industrial Controls at CERN

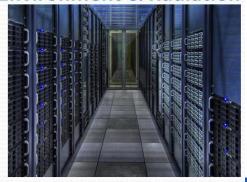
Cooling & Ventilation

Vacuum

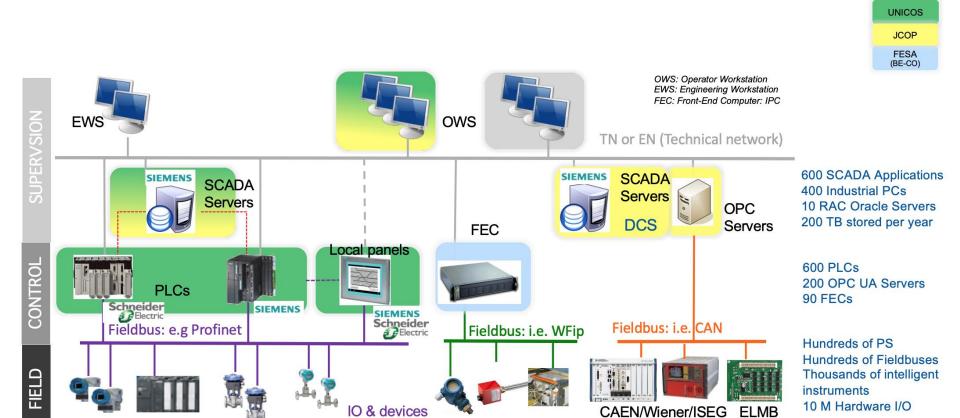
Detector Controls

Cryogenics

Gas Distribution


Environment & Radiation

Electric Grid


Interlocks and Safety

..and many others

Industrial Controls Architecture

Frameworks: