CERN SUMMER STUDENT FINAL PRESENTATION

Cross Validation Improvements in TMVA

Mohammad Uzair

Supervisors:

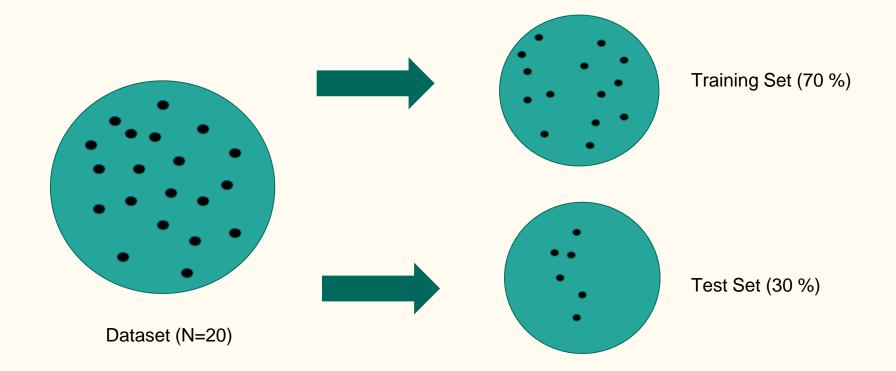
Dr. Lorenzo MONETA Mr. Hans Kim ALBERTSSON BRANN

About Me:

- Name : Mohammad Uzair
- Country : Pakistan
- C
- **Studies** : Final Year of bachelor's degree in Computer Science
- University : National University of Sciences and Technology (NUST)
- Interested in : Artificial Intelligence and Machine Learning in Computer Vision

Tasks Assigned:

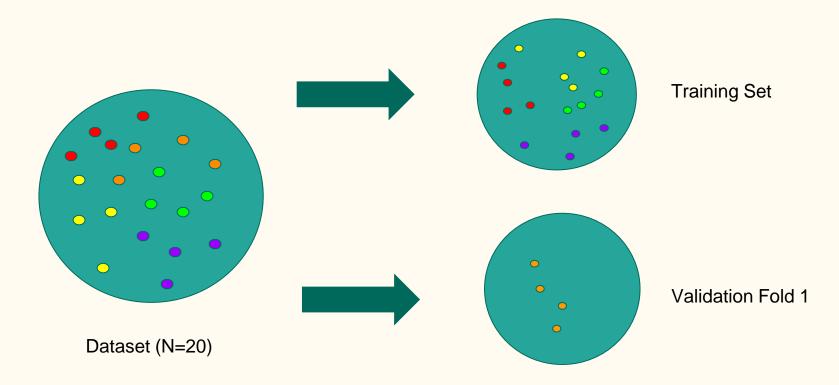
Improve Cross Validation in TMVA

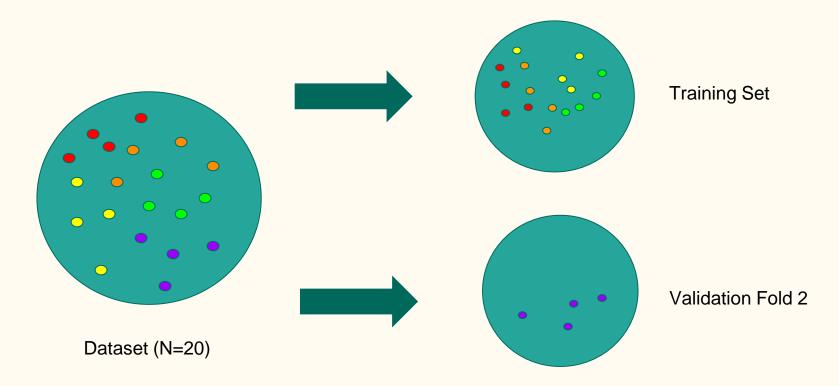

- New tutorial introducing Cross Validation in TMVA and make it available through SWAN.
- Improve presentation of tutorial by extending the plotting functionality (Introducing the feature to draw an average ROC Curve).
- Improve CV fold generation targeting unbalanced datasets (Introducing the feature of Stratified Splitting)

Validation in Machine Learning

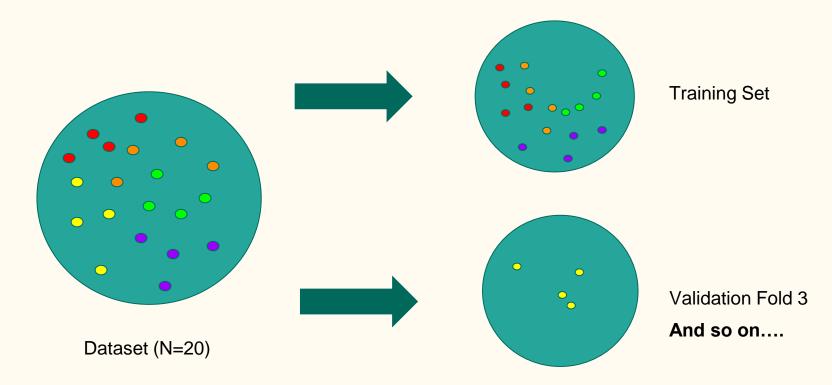
- Divide the dataset into Train and Test sets.
- Tries to estimate the expected error of the model.
- Allows us to get an honest assessment of the

trained model.


Validation in Machine Learning


Drawbacks of Validation

- Test errors can be highly variable depending on how much data we use for each set.
- Model Developed on only a subset of data. Ideally we want 100% data for training and 100% for validation.

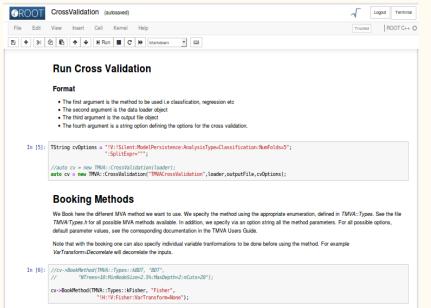

K-Fold Cross Validation

K-Fold Cross Validation

K-Fold Cross Validation

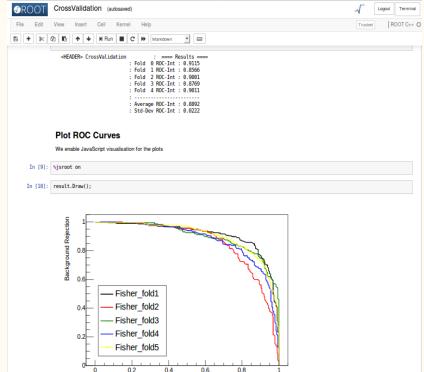
Tutorial Introducing TMVA Cross Validation

Tutorial introducing TMVA Cross Validation


- The tutorial was outdated.
- Was not easy to understand for new users.
- A new and updated tutorial in python jupyter notebook with proper explanation so that it is easy to use and understand and make it available through SWAN.

Python Jupyter Notebook for basic Tutorial on TMVA Cross Validation

DROOT	CrossValidation (autosaved)		Logout Terminal
File Edit	View Insert Cell Kernel Help	Trusted	ROOT C++ O
* *	22 🚯 🛧 🐓 M Run 🔳 C 🗰 Markdown 🗾 📾		
	TMVA		
	TMVA Cross Validation Example		
	Define input / Output Files		
	We declare the files for input and output		
In [1]:	TMVA::Tools::Instance();		
	TString inputFileName = "/data/inputdata.root";		
	<pre>auto inputFile = TFile::Open(inputFileName);</pre>		
	<pre>auto outputFile = TFile::Open("CV_Output.root", "RECREATE");</pre>		
	TMVA Factory		
	Start by creating the Factory class. We can use the factory to choose the methods whose performance you'd like to investig	ate.	
	The factory is the major TMVA object you have to interact with. Here is the list of parameters you need to pass		
	The first argument is the base of the name of all the output weightfiles in the directory weight/ that will be created with th	ne method para	meters
	 The second argument is the output file for the training results The third argument is a string option defining some general configuration for the TMVA session. For example all TMVA o removing the "1" (not) in front of the "Silent" argument in the option string 	utput can be su	ppressed by
In [2]:	<pre>TMVA::Factory factory("TMVAClassification", outputFile,</pre>		
	DataLoader		
	DataLUAUCI		


ROOT	CrossValidation (autosaved)		Logout Terminal			
le Edit	View Insert Cell Kernel Help	Truster	ROOT C++ O			
+ > 6	20 R. • • • HRun E C H Markdown • 52					
	DataLoader					
	The next step is to declare the DataLoader class which provides the interface from TMVA to the input data					
	Define input variables					
	Through the DataLoader we define the input variables that will be used for the MVA training.					
In [3]:	TMVA::DataLoader * loader = new TMVA::DataLoader("dataset");					
	<pre>loader->AddVariable("varl"); loader->AddVariable("varl");</pre>					
	<pre>loader->AddVariable("var3"); loader->AddVariable("var4");</pre>					
	Setup Dataset(s)					
	Define input data file and signal and background trees					
In [4]:	<pre>// Get signal and background data from input file Tree "tsignal = (Tree") inputFile>Get("Sig"); Tree "tbackground = (Tree") inputFile>Get("Skg");</pre>					
	// Register this data in the dataloader loader->AddSignalTree(tsignal);					
	loader->AddBackgroundTree(tSignal);					
	<pre>// Tell the factory how to use the training and testing events //</pre>					
	<pre>// If no numbers of events are given, half of the events in the tree are used // for training, and the other half for testing:</pre>					
	<pre>// loader->PrepareTrainingAndTestTree(mycut, "SplitMode=random:!V"); //To also specify the number of testing events, use: // loader</pre>					
	<pre>// loader->PrepareTrainingAndTestTree(mycut, // WisjTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:NBkgTest=3000:S Loader->PrepareTrainingAndTestTree("",</pre>	plitMode=Rando	m:[V"];			
	<pre>"inTrain_Signal=1000:nTrain_Background=1000:SplitMode=Random:NormMode=NumEvents:!V");</pre>					
	DataSetInfo : [dataset] : Added class "Signal" : Add Tree Sig of type Signal with 6000 events					
	DataSetInfo : [dataset] : Added class "Background" : Add Tree Bkg of type Background					
	: Dataset[dataset] : Class index : 0 name : Signal : Dataset[dataset] : Class index : 1 name : Background					

Python Jupyter Notebook for basic Tutorial on TMVA Cross Validation

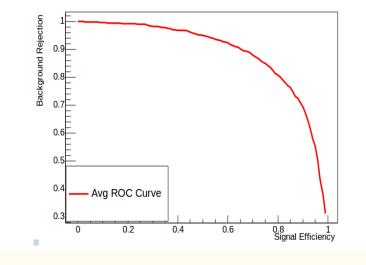
Perform the Cross Validation: Train/Test the booked methods

In [7]:	<pre>// Run cross-validation cv->Evaluate();</pre>	
	<header> Factory</header>	: Evaluate method: Fisher : Booking method: Fisher_fold1 :
	<header> Fisher_fold1</header>	: Results for Fisher coefficients: : : Variable: Coefficient:

Signal Efficiency

Extending the plotting functionality

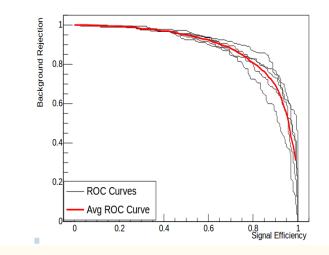
Improve the presentation of tutorial


- Currently, we can only show ROC's of individual folds.
- Often, we can be interested in the average behaviour.
- An added feature of visualising the average ROC Curve.
- Addition of this feature in the tutorial to improve the presentation.

Average ROC Curve

With drawFolds = False

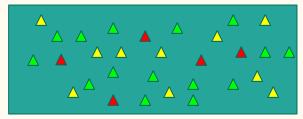
Plot Average ROC Curve



With drawFolds = True

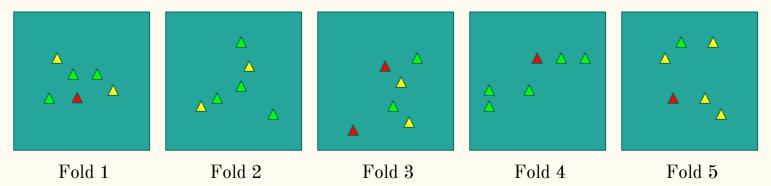
Plot ROC Curves and the Average ROC Curve

M In [12]: result.DrawAvgROCCurve("CrossValidation ROC Curves and Avg ROC Curve", kTRUE);

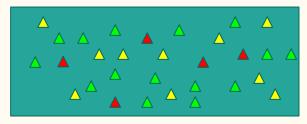

Improve CV fold generation

Random Splitting VS Stratified Splitting

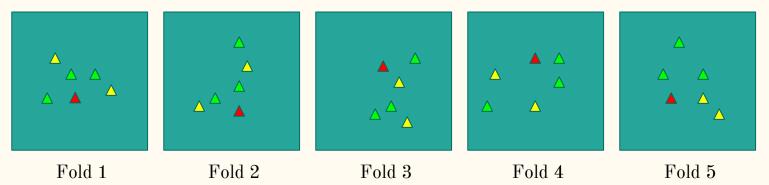
- Determines the distribution of input data.
- Random Splitting just randomly splits the data equally.
- Data of a fold can be distributed differently than the whole.
- Problems, in particular, arise with unbalanced classes (can more easily occur in multi-class classification).
- Stratified Splitting ensures that each fold follows the same distribution as the whole.


Random Splitting VS Stratified Splitting

• Random Splitting just randomly splits the data equally


30 samples 03 Classes $^{\land}$ 10 samples $^{\land}$ 15 samples $^{\land}$ 05 samples

6 random samples in each fold


Random Splitting VS Stratified Splitting

• Stratified Splitting randomly splits data ensuring that each fold is good representative of the whole.

30 samples
03 Classes
▲ 10 samples
▲ 15 samples
▲ 05 samples

6 random samples in each fold

Stratified Splitting in TMVA

```
TMVA::DataLoader *d = new TMVA::DataLoader("dataset");
d->AddSignalTree(std::get<1>(data_class0));
d->AddBackgroundTree(std::get<1>(data_class1));
d->AddVariable("x", 'D');
d->AddSpectator("id", "id", "");
d->PrepareTrainingAndTestTree(
        "", Form("SplitMode=Block:nTrain_Signal=%i:nTrain_Background=%i:!V", nPointsSig, nPointsBkg));
```

d->GetDataSetInfo().GetDataSet(); // Force creation of dataset.

```
//For Random Splitting
TMVA::CvSplitKFolds split{NUM_FOLDS, "", kFALSE, 0};
    d->MakeKFoldDataSet(split);
```

```
//For Stratified Splitting
TMVA::CvSplitKFolds split1{NUM_FOLDS, "", kTRUE, 0};
    d->MakeKFoldDataSet(split1);
```

Future Improvements:

- Weighted kFolds Splitting
- Investigate feasibility of integrating TMVA GUI with tutorials
- Investigate feasibility of adding validation set (this would mainly be beneficial for methods with a large number of parameters, e.g. DNN and BDT's)

Mr. Hans Kim ALBERTSSON BRANN