New ideas for Jet Substructure

Lais Schunk

DESY

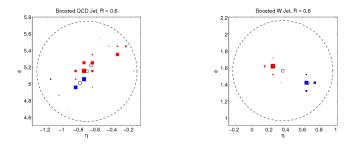
B2G Spring Workshop Open Session – May 23, 2018

Lais		

New ideas for Jet Substructure

- Jet substructure techniques play a major role in LHC physics
 Boosted regime → look at dynamics inside the jet
- Different techniques are available:

Shapes constrain soft gluon radiation, signal is colorless and has different radiation pattern than QCD jets; e.g. Energy correlation, N-subjettiness.
 Prong Finders find hard prongs in the jets, usually signal has 2 symmetric prongs and QCD background has only 1; e.g. Y-splitter.


Groomers clean soft and large angle radiation, often dominated by non-perturbative effects *e.g.* modified MassDrop, Soft Drop

Example : N-subjettiness

• Measures radiation around N (pre-determined) axis Thaler, Tilburg (2010)

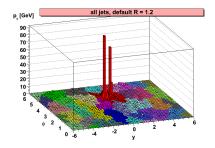
$$\begin{aligned} &\tau_N &= \quad \frac{1}{R^\beta} \sum_{i \in jet} z_i \min_{a_i \dots a_N} (\theta^\beta_{ia_1}, \dots, \theta^\beta_{ia_N}), \\ &\theta^2_{ij} &= \quad \Delta \phi^2_{ij} + \Delta y^2_{ij}, \qquad z_i = p_{t,i} / p_{t,jet}. \end{aligned}$$

• Use the ratios $au_{21}= au_2/ au_1$ or $au_{32}= au_3/ au_2$ to find multi-prong jets

Example : Energy correlation functions

• Basis of observables usend to probe multi-pronged jets Larkoski, Salam, Thaler (2013)

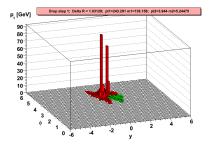
$$\begin{array}{lcl} e_2^{(\beta)} & = & \displaystyle\sum_{1 \le i < j \le n_J} z_i z_j \theta_{ij}^{\beta} \\ e_3^{(\beta)} & = & \displaystyle\sum_{1 \le i < j < k \le n_J} z_i z_j z_k \theta_{ij}^{\beta} \theta_{ik}^{\beta} \theta_{jk}^{\beta} \end{array}$$


• Used to 2-pronged boson discrimination (like Z/W/H)

$$C_2^{(\beta)} = rac{e_3^{(\beta)}}{(e_2^{(\beta)})^2}, \quad ext{or} \quad D_2^{(\beta)} = rac{e_3^{(\beta)}}{(e_2^{(\beta)})^3}$$

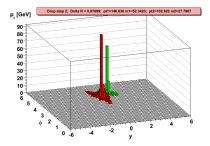
$$C_3^{(\beta)} = \frac{e_4^{(\beta)} e_2^{(\beta)}}{(e_3^{(\beta)})^2}$$

Removes soft and large-angle radiation;


Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013) Larkoski, Marzani, Soyez, Thaler (2014)

Removes soft and large-angle radiation;

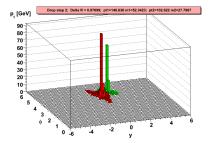
Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013) Larkoski, Marzani, Soyez, Thaler (2014)


- Break jet into two j → j₁ + j₂; using C/A algorithm
- 2 Check condition $\frac{\min(p_{T,1},p_{T_2})}{(p_{T,1}+p_{T,2})} > z_{\text{cut}} \left(\frac{\theta_{12}}{R}\right)^{\beta};$

Removes soft and large-angle radiation;

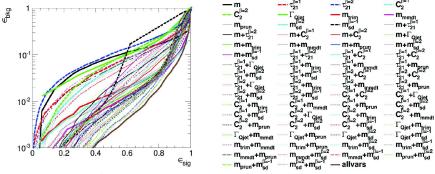
Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013) Larkoski, Marzani, Soyez, Thaler (2014)

- Break jet into two j → j₁ + j₂; using C/A algorithm
- 2 Check condition $\frac{\min(p_{T,1},p_{T_2})}{(p_{T,1}+p_{T,2})} > z_{\text{cut}} \left(\frac{\theta_{12}}{R}\right)^{\beta};$
- If fails, removes the subjet with lower p_T.



Removes soft and large-angle radiation;

Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013) Larkoski, Marzani, Soyez, Thaler (2014)


- Break jet into two j → j₁ + j₂; using C/A algorithm
- 2 Check condition $\frac{\min(p_{T,1},p_{T2})}{(p_{T,1}+p_{T2})} > z_{\text{cut}} \left(\frac{\theta_{12}}{R}\right)^{\beta};$
- If fails, removes the subjet with lower p_T.
- If passes, stop recursion;

mMDT is equivalent to Soft Drop wiht $\beta = 0$

A case for analytical approach

 Parton shower Monte Carlo generators are very useful tools, but numerically costly and the physical message is not always clear.

Plot : Grogory Soyez

• Example: ROC curves for different jet substructure methods

• We can acquire insight from analytical expressions

- \rightarrow Better understand a phenomenon
- \rightarrow Develop **better tools** (*e.g.* boson and top taggers)

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop **better tools** (*e.g.* boson and top taggers)
- Obtain more precise results
 - \rightarrow Parton Shower only provide the lowest logarithm accuracy
 - \rightarrow Resummation can achieve higher accuracies
 - \rightarrow Results are systematically improvable

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop **better tools** (*e.g.* boson and top taggers)
- Obtain more precise results
 - \rightarrow Parton Shower only provide the lowest logarithm accuracy
 - \rightarrow Resummation can achieve higher accuracies
 - \rightarrow Results are systematically improvable
- Compute robust uncertainty bands

 \rightarrow Correct assessment of the higher orders corrections we are neglecting

Some recent developments

• Development of new jet substructure tools

- Generalizations of energy-correlation functions
- Dichroic observables
- Recursive Soft Drop
- Observables decorrelated from jet masses

• Development of new jet substructure tools

- Generalizations of energy-correlation functions
- Dichroic observables
- Recursive Soft Drop
- Observables decorrelated from jet masses
- Precision calculations in groomed jet mass
- Studies on fitting of the strong coupling
- Advances in machine learning techniques See Larkoski, Moult, Nachman (2017) for an overview

New angles on energy correlation functions

Moult, Necib, Thaler (2016)

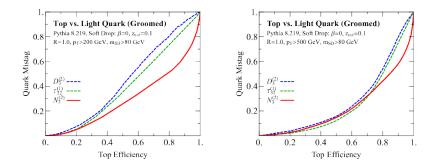
• Generalization of the energy correlation functions

$$_{v}e_{n}^{(\beta)} = \sum_{1 \leq i_{1} < \dots < i_{n} \leq n_{J}} z_{i_{1}} \dots z_{i_{n}} \prod_{m=1}^{v} \min_{s < t \in \{i_{1} \dots i_{n}\}} \{\theta_{st}^{\beta}\}$$

- In particular, defined the series
 - M_i : identify jets with hard prongs, effective for groomed jets

$$M_i^{(\beta)} = \frac{1e_{i+1}^{(\beta)}}{1e_i^{(\beta)}}$$

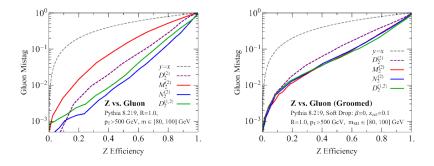
• N_i : mimics the behavior of N-subjettiness, no need for pre-defined axes


$$N_i^{(\beta)} = rac{2e_{i+1}^{(\beta)}}{(1e_i^{(\beta)})^2}$$

• U_i : probe multiple emissions within 1-pronged jets

$$U_i^{(\beta)} = {}_1e_{i+1}^{(\beta)}$$

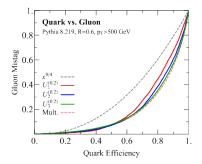
Top Tagging N_3


• Use the variable $N_3 = {_2e_4^{(\beta)}}/{({_1e^{(\beta)}})^2} \sim \tau_3/\tau_2$ (for groomed jets only)

• Improved performance, specially for higher significance efficiency

2-prong tagging : N_2 , M_2 and $D_2^{(lpha,eta)}$

- Observables proposed: $N_2 = {}_1e_3^{(\beta)}/{}_1e_2^{(\beta)}$, $M_2 = {}_2e_3^{(\beta)}/{}_1(e_2^{(\beta)})^2$ and $D_2^{(\alpha,\beta)} = {}_3e_3^{(\alpha)}/{}_1(e_2^{(\beta)})^{\frac{3\alpha}{\beta}}$
- Grooming matters, it can change considerably ROC curves



• These shapes perform slightly better than standard $D_2^{(2)}$ (see paper for stability study in MC)

Lais Schunk

Quark / gluon discrimination: U_i

- Proposed the variable $U_i = {}_1 e_{i+1}^{(\beta)}$
- Case $U_1 = C_1$ is the standard quark/gluon discrimination variable

• Increasing $i \rightarrow$ increases performance (but the effect saturates)

Schu	

Dichroic Jet Shapes

Salam, LS, Soyez (2016)

- Explore the interplay between groomers / prong finders and jet shapes;
- Example : N-subjetiness Usual τ_{21} measures

$$au_{21} = rac{ au_2(\mathsf{mMDT})}{ au_1(\mathsf{mMDT})} \quad \text{or} \quad rac{ au_2(\mathsf{SD})}{ au_1(\mathsf{SD})} \quad \text{or} \quad rac{ au_2(\mathsf{plain})}{ au_1(\mathsf{plain})}$$

Dichroic Jet Shapes

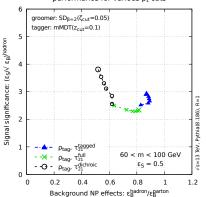
Salam, LS, Soyez (2016)

- Explore the interplay between groomers / prong finders and jet shapes;
- Example : N-subjetiness Usual au_{21} measures

$$au_{21} = rac{ au_2(\mathsf{mMDT})}{ au_1(\mathsf{mMDT})} \quad ext{or} \quad rac{ au_2(\mathsf{SD})}{ au_1(\mathsf{SD})} \quad ext{or} \quad rac{ au_2(\mathsf{plain})}{ au_1(\mathsf{plain})}$$

• **Dichroic** : different subjets for numerator / denominator in τ_{21} ratios;

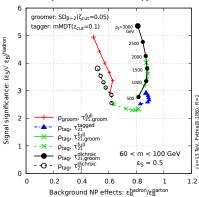
$$\tau_{21}^{\text{dichroic}} \equiv \frac{\tau_2^{\text{full} / \text{SD}}}{\tau_1^{\text{tagged}}}$$


- au_2 on large jet o sensitivity to diffent color structures
- au_1 on small jet ightarrow only sensitive to the invariant mass
 - \rightarrow smaller influence of non-perturbative effects.

Lais Schunk

New ideas for Jet Substructure

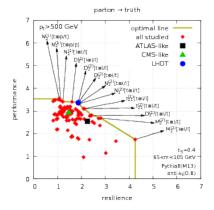
B2G Workshop 2018


13 / 27

performance for various pt cuts

- Dichroic τ_{21} variation
 - \rightarrow increases discriminating power

Dichroic Jet Shapes


performance for various pt cuts

- Dichroic τ_{21} variation \rightarrow increases discriminating power
- With pre-grooming step
 → reduction of NP effects and
 still has a better performance
- Performance gain increases as *p*_t increases

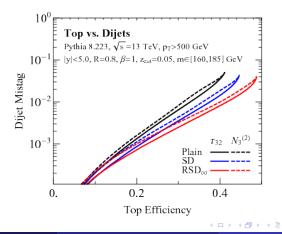
Dichroic Jet Shapes

• Comparison between a variety of jet shapes

Les Houches 2017 SM Working Group

• Dichroic version of observables show good performance with relatively low sensitivity to non-perturbative effects

Lais Schunk

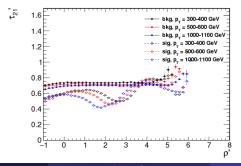

New ideas for Jet Substructure

Dreyer, Necib, Soyez, Thaler (2018)

- Generalized version of Soft Drop algorithm
- Recursive Soft Drop algorithm:
 - **1** Uncluster the jet into 2 subjets $j \rightarrow j_1 + j_2$
 - 2 Check the Soft Drop condition $\frac{\min(p_{t1}, p_{t2})}{p_{t1}+p_{t2}} > z_{cut} \Delta R_{12}^{\beta}$
 - Skeep both subjets if condition is met, eliminate softer subjet if it is not
 - Iterate process until SD condition is met N times, or until all particles are recursed through
- For N = 1, we recover the original Soft Drop

Recursive Soft Drop

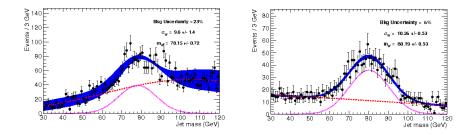
- Example : boosted top tagging
- Increases mass resolution and improves tagging performance (when combined to others jet shapes)


Lais Schunk

DDT : Designing Decorrelated Taggers

Dolen, Harris, Marzani, Rappocio, Tran (2016)

- Observables are modified to reduce mass correlations
 → practical advantages for the experimental measures
- Redefine the following quantities:


$$\rho = \log\left(\frac{m^2}{p_t^2}\right) \rightarrow \rho' = \log\left(\frac{m^2}{p_t\mu}\right), \quad \tau_{21} = \frac{\tau_2}{\tau_1} \rightarrow \tau'_{21} = \frac{\tau_2}{\tau_1} - M * \rho'$$

Case study : Diboson background estimate

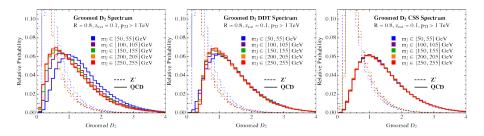
• Both selections with same background efficiency

Blue band is the background $+ \mbox{ signal fit }$

Cuts are $au_{21} < 0.45$ in left and $au_{21}' < 0.6$ in right

• We see a considerable reduction of uncertainty bands

Moult, Nachman, Neil (2017)


- Convoluted SubStructure approach : use **theoretical knowledge** over observables to decorralate them and the jet mass
- Can be seen as a generalized systematical approach to DDT
- Derivate a function F_{CSS} (see systematical derivation in the paper)

$$\frac{d\sigma^{\text{CSS}}}{dD_2} = \int_0^\infty F_{\text{CSS}}(\epsilon) \frac{d\sigma}{dD_2} (D_2 - \epsilon)$$

• F_{CSS} contains both perturbative and non-perturbative information

$$F_{\text{CSS}} = F_{\text{NP}}^{-1} \otimes F_{\text{P}} \otimes F_{\text{NP}}$$

• D₂ groomed distribution for signal jets (dashed) and QCD background

QCD background becomes decorrelated from jet mass

< □ > < □ > < □ > < □ > < □ > < □ >

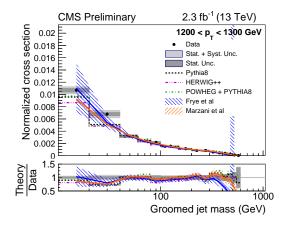
- Connection between measurements and calculations
- Jet mass is one of the simplest observables
- Grooming eliminates part of UE contamination
- We studied modified MassDrop Tagger and SoftDrop

- Connection between measurements and calculations
- Jet mass is one of the simplest observables
- Grooming eliminates part of UE contamination
- We studied modified MassDrop Tagger and SoftDrop
- For **boosted jets** $p_T \gg m \rightarrow \rho \equiv m/(p_T R) \ll 1$ $\rightarrow \text{ log enhancements } \alpha_s^n \log^{2n}(1/\rho)$

Needs to be resummed at all orders

Groomed jet mass

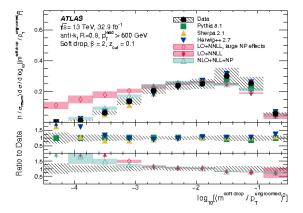
- Various interesting QCD structures emerging
 - For mMDT it becomes $[\alpha_s f(z_{cut}) \log(1/\rho)]^n$ at leading-log
 - Finite z_{cut} introduce a flavour changing matrix structure
- Compare with experiment \rightarrow needs a matching procedure:


$$\underbrace{\underbrace{N^{k}LL}}_{\text{small }\rho} + \underbrace{\underbrace{N^{m}LO}}_{\text{large }\rho}$$

Small $\rho \rightarrow$ **resummation** of large logarithms Large $\rho \rightarrow$ **fixed-order** (exact at $\mathcal{O}(\alpha_s^m)$)

- Calculations done with different theoretical approaches
 - NLL + LO for $z_{
 m cut} \ll 1$
 - LL + NLO for all $z_{\rm cut}$
 - Inclusive jets version

Frye, Larkoski, Schwartz, Yan (2016) Marzani, Soyez, LS (2017) Kang, Lee, Liu, Ringer (2018)


• Comparison with CMS measurements using mMDT

CMS-PAS-SMP-16-010

Lais Schunk

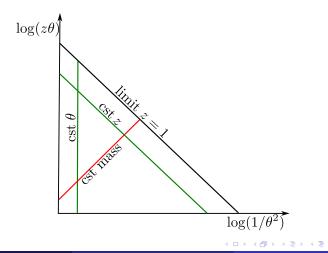
• Comparison with ATLAS measurements using SoftDrop ($\beta > 0$)

CERN-EP-2017-231

Les Houches 2017 SM Working Group

- Possibility of using jet observables at the LHC to do a $\alpha_{\rm s}$ fitting
- Use of grooming techniques to remove undesired NP effects
- Developments in jet shapes calculations (now up to NNLL)
- Recent feasibility study using groomed jet mass as an example
 - With currently achievable theoretical and experimental uncertainties a α_s extraction at 10% level is realistic
 - Optimistic about how developments on both sides can improve this precision

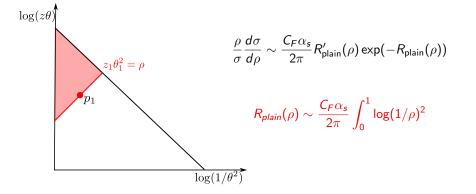
See also : use of groomed tools to improve α_s fitting obtained with e^+e^- collisions Baron, Marzani, Theeuwes (2018), or Theeuwe's Talk at SCET18

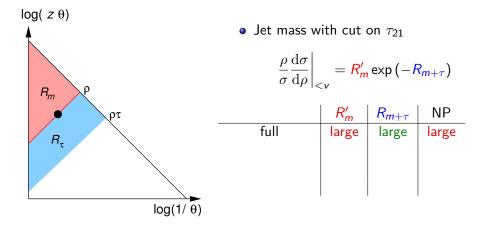

- Jet substructure domain has a very active community, both in experiment and theory
- Analytical studies:
 - Better insight of existing tools
 - 2 Development of new tools
 - I Higher accuracy results
 - 8 Robust uncertainty bands
- Increasing role as LHC reaches higher energy scales

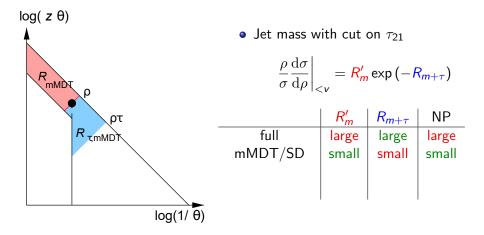
Backup slides

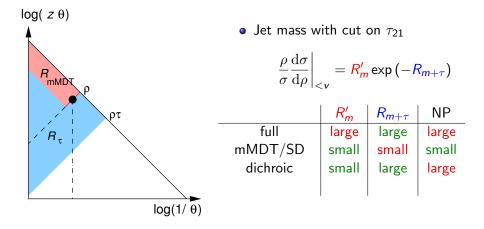
æ

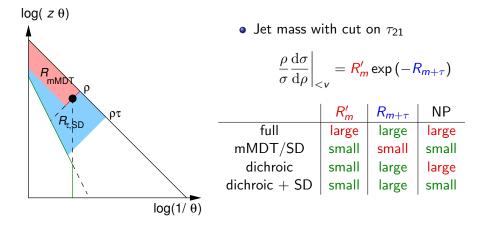
Lund diagrams

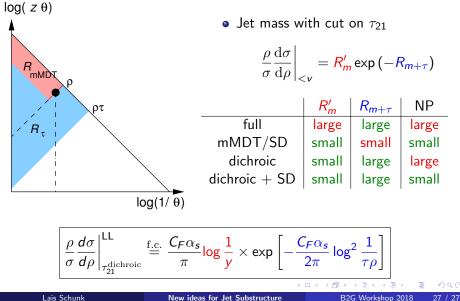

• Lund diagram : graphical representation of the results in $z\theta$ (transverse momentum) vs. $1/\theta^2$ (emission angle) coordinates.




Lund diagrams


• Lund diagram : graphical representation of the results in $z\theta$ (transverse momentum) vs. $1/\theta^2$ (emission angle) coordinates.





B2G Workshop 2018 27 / 27

Lais Schunk

B2G Workshop 2018