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W3-S-Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the
Standard  Model"
Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  under  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)

Code  number

PR  /  012/15

Category  (s)

Professorships

Number  of  points

1

Of  use

Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  under  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)

Application  deadline

07/03/2015

Text:

At  the  Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  is  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)  a

W3-S-Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the

Standard  Model"

to  be  filled  as  soon  as  possible.

DESY  is  one  of  the  leading  centers  for  Astroparticle  and  Particle  Physics.  The  research

program  of  particle  physics  includes  a  strong  involvement  in  the  LHC  experiments  and

basic  research  in  the  field  of  theoretical  particle  in  the  Standard  Model  and  possible

extensions.  The  Institute  of  Physics,  Humboldt  University  is  also  involved  with  two

professorships  at  the  LHC  experiment  ATLAS.  The  research  interests  of  the  working  groups

in  the  field  of  theoretical  particle  physics  ranging  from  mathematical  physics  on  the

phenomenology  of  particle  physics  to  lattice  gauge  theory.

Candidates  /  students  should  be  expelled  through  excellence  with  international  recognition

in  the  field  of  theoretical  particle  physics  with  a  focus  on  the  development  of  models

beyond  the  Standard  Model.  Is  expected  to  close  cooperation  with  the  resident  at  the

Humboldt  University  workgroups.  In  addition  to  the  development  of  possible  standard

model  extensions  and  phenomenological  studies  of  experimental  verification  to  be  carried

out.  Place  special  emphasis  send  the  Higgs  physics.  It  is  expected  that  he  /  she  maintains

the  scientific  contacts  between  DESY  and  the  HU  and  active  in  the  DFG  Research  Training

Group  GK1504  "Mass,  Spectrum,  Symmetry:  Particle  Physics  in  the  Era  of  the  Large

Hadron  Collider"  cooperates.  He  /  she  should  be  at  all  levels  of  teaching  in  physics  at  the

HU  participate  (2  LVS)  and  will  have  the  opportunity  to  acquire  outside  of  a  creative

research  program.

Applicants  /  inside  must  meet  the  requirements  for  appointment  as  a  professor  /  to

professor  in  accordance  with  §  100  of  the  Berlin  Higher  Education  Act.

DESY  and  HU  aim  to  increase  the  proportion  of  women  in  research  and  teaching  and  calling

for  qualified  scientists  urgently  to  apply.  Severely  disabled  applicants  /  will  be  given

DESY

Markus Diehl

Deutsches Elektronen-Synchroton DESY

Collider physics

in Hamburg

Theory Jamboree

Hamburg, 12 June 2015

( christophe.grojean@desy.de )
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?
I don’t know. Nobody knows [If it were known, it would be part of the SM!]
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What is physics beyond the Standard Model?
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I don’t know. Nobody knows [If it were known, it would be part of the SM!]

Many (experimental and theoretical) evidences that BSM exist.
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Many (experimental and theoretical) evidences that BSM exist.
We have plenty of good ideas and there are rich opportunities
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I don’t know. Nobody knows [If it were known, it would be part of the SM!]

Many (experimental and theoretical) evidences that BSM exist.
We have plenty of good ideas and there are rich opportunities

But no guarantee we are on the right track.
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I don’t know. Nobody knows [If it were known, it would be part of the SM!]

Many (experimental and theoretical) evidences that BSM exist.
We have plenty of good ideas and there are rich opportunities

But no guarantee we are on the right track.
We should stay open-minded and also learn from our failures
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What is physics beyond the Standard Model?

?
I don’t know. Nobody knows [If it were known, it would be part of the SM!]

Many (experimental and theoretical) evidences that BSM exist.
We have plenty of good ideas and there are rich opportunities

But no guarantee we are on the right track.
We should stay open-minded and also learn from our failures

“Looking and not finding is different than not looking”
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I don’t know. Nobody knows [If it were known, it would be part of the SM!]

Many (experimental and theoretical) evidences that BSM exist.
We have plenty of good ideas and there are rich opportunities

But no guarantee we are on the right track.
We should stay open-minded and also learn from our failures

“Looking and not finding is different than not looking”
“A negative search teaches us something about Nature”
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What is the probability that BSM seats B2G?

As usual the conservative and honest answer is 50%
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Current status of BSM searches

lost in translation: Babel tower! the ultimate goal

theorists and experimentalists also need 
to start speaking a common language
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What is the scale of New Physics?

Where is everyone?
even new physics at few hundreds of GeV might be difficult to see and could escape our detection
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 displaced vertices

 no MET, soft decay products, long decay chains
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 Neutral naturalness 
     (twin Higgs, folded susy)   
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Ideology

?
No single experiment can explore all directions at once …
but many directions explored by the FCC project 

A. Wulzer [FCC week]
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Panel discussion
• Not really “illuminating” 

• Everybody on the defensive side 

• CepC representative “we should all go separate to the 
funding agencies so that at least one gets funded” ?!?! 

• Nima: “If you do particle physics with the goal of 
discovering a new particle, better you think what to do with 
your life now.” (in the context of “direct discovery” vs 
“indirect/precision physics” at future colliders) 

• …. + other personal comments ….

14

LHCP ‘2017

Particle or not Particle?
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g* strong: 

interactions before resonances

Tail parameters:  W and Y

High-energy lepton colliders can further improve the constraints

✦ ILC bounds:       500 GeV

✦ CLIC bounds:    1 TeV  
                        3 TeV

LEP LHC13 FCC 100 ILC TLEP CEPC ILC 500 CLIC 1 CLIC 3

luminosity 2⇥ 10
7 Z 0.3/ab 3/ab 10/ab 10

9 Z 10
12 Z 10

10 Z 3/ab 1/ab 1/ab

W ⇥10
4

[�19, 3] ±0.7 ±0.45 ±0.02 ±4.2 ±1.2 ±3.6 ±0.3 ±0.5 ±0.15

Y ⇥10
4

[�17, 4] ±2.3 ±1.2 ±0.06 ±1.8 ±1.5 ±3.1 ±0.2 ⇠ ±0.5 ⇠ ±0.15

✦ Low-energy lepton machines not competitive with HL-LHC

[Farina, GP, Pappadopulo, Rudermann Torre, Wulzer ’16]FCC 100 would give 
much stronger bounds

|W | < 0.3⇥ 10�4 , |Y | < 0.2⇥ 10�4

|W |, |Y | . 0.5⇥ 10�4

|W |, |Y | . 0.15⇥ 10�4

Recast from  
[CLIC Design Report ’12]

Recast from [Harigaya et al. ’15]

e.g. measurement of p4 EW oblique parameters 
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10 20 30 40

1

3

10

m* [TeV]
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New Physics

Exploration potential

e.g. susy searches, vector resonances, extended Higgs sectors, searches for new interactions
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The power of PDF

http://collider-reach.web.cern.ch/collider-reach/
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The power of PDF100-ish TeV pp collider
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Figure 7: Evolution with time of the mass reach at
p

s = 100 TeV, relative to HL-LHC,
under di↵erent luminosity scenarios (1 year counts for 6 ⇥ 106 sec). The left (right) plot
shows the mass increase for a (qq̄) resonance with couplings enabling HL-LHC discovery
at 6 TeV (1 TeV).

tive on extending the discovery reach for new phenomena at high mass scales,
high-statistics studies of possible new physics to be discovered at (HL)-LHC,
and incisive studies of the Higgs boson’s properties. Specific measurements
may set more aggressive luminosity goals, but we have not found generic
arguments to justify them. The needs of precision physics arising from new
physics scenarios to be discovered at the HL-LHC, to be suggested by anoma-
lies observed in e+e� collisions at a future linear or circular collider, or to
be discovered at 100 TeV, may well drive the need for even higher statistics.
Such requirements will need to be established on a case-by-case basis, and
no general scaling law gives a robust extrapolation from 14 TeV. Further
work on ad hoc scenarios, particularly for low-mass phenomena and elusive
signatures, is therefore desirable.

For a large class of new-physics scenarios that may arise from the LHC,
less aggressive luminosity goals are acceptable as a compromise between
physics return and technical or experimental challenges. In particular, even
luminosities in the range of 1032 cm�2s�1 are enough to greatly extend the
discovery reach of the 100 TeV collider over that of the HL-LHC, or to en-
hance the precision in the measurement of discoveries made at the HL-LHC.

We have given an overview of the impressive raw capabilities of the 100
TeV pp collider. Of course, given that we can extrapolate the SM alone

16

Hinchliffe, Kotwal, Mangano, Quigg, LTW 

A factor of at least 5 increase in reach 
beyond the LHC, with modest luminosity

Hinchliffe, Kotwal, Mangano, Quigg, Wang ’15

http://collider-reach.web.cern.ch/collider-reach/
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In conventional realizations of SUSY, a special role is played by the 
Higgsinos, stops, and gluinos, as these couple strongest to the Higgs. 

(Dimopoulos & Giudice ’95; Cohen, Kaplan & Nelson ’96 ......) 
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UV scale where the soft 
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What should we expect?

} well tested @ LHC
but most questionable predictions

(RG effects)

}
light Higgsinos!

very low sensitivity @ LHC
ILC needed to probe the other side 

I. Probing natural SUSY
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I. Probing natural SUSY

Fig. 12: Left: Discovery potential and Right: Projected exclusion limits for 3000 fb�1 of total integrated lumi-
nosity at

p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/T cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),
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Fig. 12: Left: Discovery potential and Right: Projected exclusion limits for 3000 fb�1 of total integrated lumi-
nosity at

p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/T cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),
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Fig. 16: Results for the gluino-squark-neutralino model. The neutralino mass is taken to be 1 GeV. The left [right]
panel shows the 5 � discovery reach [95% CL exclusion] for the four collider scenarios studied here. A 20%

systematic uncertainty is assumed and pile-up is not included.

3.4.2.2 Associated production with meq > meg

The gluino-squark-neutralino model in the previous section was probed in a region where meg ⇠ meq. In
this section, we consider squark-gluino associated production in a region of parameter space in which
the gluinos are relatively light, while the squarks are heavier, but not completely decoupled. This work
is documented more completely in [150], where we have analysed the prospects for squark-gaugino
associated production at a 100 TeV collider.

Squark-gluino associated production is interesting because it has the potential to probe much
higher squark masses than those reached in pair production. Spectra with a hierarchy between the gluino
and the first two generation squarks are predicted in many scenarios, such as anomaly-mediated SUSY
breaking [151, 152], or in “mini-split"-type models [33, 153, 154].

We consider two simplified models for squark-gluino associated production. In both, the particle
content consists only of first and second generation squarks, gluino, and a Bino LSP (e�0

1 = B̃). The two
models correspond to different choices of the LSP mass:

– Non-compressed: M1 = 100 GeV (results in Fig. 18(a))
– Compressed: meg � me�0

1
= 15 GeV (results in Fig. 18(b))

where we take the first and second generation squarks to be degenerate in mass, and decouple all other
superpartners. Our results are insensitive to the choice of M1 = 100 GeV in the non-compressed spectra,
as the LSP is effectively massless for me�0

1
⌧ meg. The compressed spectra are consistent with the gluino-

neutralino dark matter (DM) coannihilation region [155, 156].
Events from squark-gluino associated production have distinctive event topologies, with a hard

leading jet and significant E/T . Both arise primarily from the decay of the heavy squark, since the gluino
is produced at relatively low pT . As in the gluino simplified models above, the dominant sources of
background are top pair production and production of an SM boson + jets [78]. However, both of these
backgrounds fall off rapidly both with increasing pT (j1), E/T , and E/T

p
HT (where HT is the scalar sum

of the jet transverse energies). This can be seen for an example spectrum point in Fig. 17.
The leading jet typically has a pT (j1) ⇠ meq/2, while the decay of the squark into the LSP

eq ! qeg ! 3 qe�0
1 results in a highly boosted neutralino and large E/T . As such, heavy squark - light

gluino associated production events have a striking collider signature with very low SM backgrounds.
We impose the following baseline cuts for both spectra:

HT > 10 TeV, E/T /
p

HT > 20 TeV1/2.

32

Fig. 12: Left: Discovery potential and Right: Projected exclusion limits for 3000 fb�1 of total integrated lumi-
nosity at

p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/T cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),
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p
s = 100 TeV. The solid lines show the expected discovery or exclusion obtained from the boosted top

(black) and compressed spectra (blue) searches. In the boosted regime we use the E/T cut that gives the strongest
exclusion for each point in the plane. The dotted lines in the left panel show the ±1� uncertainty band around the
expected exclusion.

Collider Energy Luminosity Cross Section Mass
LHC8 8 TeV 20.5 fb�1 10 fb 650 GeV
LHC 14 TeV 300 fb�1 3.5 fb 1.0 TeV

HL LHC 14 TeV 3 ab�1 1.1 fb 1.2 TeV
HE LHC 33 TeV 3 ab�1 91 ab 3.0 TeV
FCC-hh 100 TeV 1 ab�1 200 ab 5.7 TeV

Table 1: The first line gives the current bound on stops from the LHC 8 TeV data [106, 132]. The remaining lines
give the estimated 5� discovery reach in stop pair production cross section and mass for different future hadron
collider runs (from [131]). At 100 TeV, NLL+NLO cross sections can be used to extend the reach.

boosted top tagging may suffer from intrinsic limitations due to the nature of calorimeters [18], the
search presented here avoids specialized substructure variables and instead uses top-tagging techniques
established at the LHC. This is applied to stop searches in theory studies in [108,127–131]. Top tagging
has been used by experiments at the LHC [137, 138] in other types of searches, and from [137] we take
the efficiency of top tagging to be 50% for tops with pT > 500 GeV. From the same search we take the
fake rate to be 5% for the same pT range. There is very little data for pT > 800 GeV, but we will use
these efficiencies throughout out study, even at very high energy. The HPTTopTagger [15] study focuses
on pT > 1 TeV and finds somewhat lower tagging efficiency but also lower fake rates.

Therefore, we make the following cuts taking the efficiency from the literature:

– Require both tops decay hadronically (46%),
– Require one b-tag (70%) [139, 140],
– Require both tops pass a top tagger (25%).

We also simulate pair production of 6 TeV stops decaying to a nearly massless (1 GeV) neutralino
at a 100 TeV machine. The simulation is done at parton level with MadGraph 5 [121] and is used to
compute the efficiency for the following two cuts:

– Require that both tops have pT > 500 GeV (97%),

25
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I. Natural SUSY: beyond standard searches

Run-1: search for heavy stop (t̃2)
• 2012 (20 fb�1): stops searches based on t̃1 t̃1

production, with t̃1 ! t�̃0
1 or t̃1 ! b�̃±

1

• No sensitivity for t̃1 ! t�̃0
1 with

m
t̃1

& m�̃0
1
+ mt : very similar to SM tt̄

• [New at the LHC] Production of the heavier
stop mass eigenstate (t̃2) relying on the
t̃2 ! Zt̃1 decay to reduce tt̄ ! Signature:
Z(`+`�)+`+b+E

miss
T

• Eur. Phys. J. C 74 (2014) 2883 (20 fb�1)
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Run-2: t̃2 searches in 2016

• Analysis performed in collaboration with the Bern group

• ATLAS-CONF-2016-038 (13 fb�1): explore t̃2 ! Zt̃1 with 3`+b+E
miss
T

• JHEP 1708 (2017) 006 (36 fb�1): analysis extended to t̃2 ! ht̃1 with
1`+4b+E

miss
T

• Interpretations for varying BRs in t̃2 ! ht̃1/Zt̃1 and also for t̃1 ! t�0
2,

�0
2 ! h/Z �̃0
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Searching for light stop from heavy stop decay

~ RUN 2 ~

X. Poveda @ DESY’17

~ RUN 1 ~
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II. Probing Compositeness: fermions 
(aka vector-like quarks)
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Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Torre, Thamm, Wulzer ’15

Collider Energy Luminosity ⇠ [1�] References

LHC 14TeV 300 fb�1 6.6� 11.4⇥ 10�2 [60–62]

LHC 14TeV 3 ab�1 4� 10⇥ 10�2 [60–62]

ILC 250GeV 250 fb�1

4.8-7.8⇥10�3 [1, 62]
+ 500GeV 500 fb�1

CLIC 350GeV 500 fb�1

2.2 ⇥10�3 [62, 63]+ 1.4TeV 1.5 ab�1

+ 3.0TeV 2 ab�1

TLEP 240GeV 10 ab�1

2⇥10�3 [62]
+ 350GeV 2.6 ab�1

Table 3.1: Summary of the reach on ⇠ (see the text for the definition) for various collider options.

4 EWPT reassessment

As mentioned in the Introduction, EWPT, and in particular the oblique parameters Ŝ and T̂ ,

set some of the strongest constraints on CH models. However, as we stressed before, they su↵er

from an unavoidable model dependence, so that incalculable UV contributions can substantially

relax these constraints [19]. We believe that presenting the corresponding exclusion contours

in the previous plots without taking into account any possible UV contribution would lead to a

wrong and too pessimistic conclusion. Therefore we parametrize the new physics contributions

to Ŝ and T̂ as
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where the first terms represent the IR contributions due to the Higgs coupling modifications

[11], the second term in �Ŝ comes from tree-level exchange of vector resonances and the last

terms parametrize short distance e↵ects. The scale ⇤ in eq. (4) represents the scale of new

physics, which we set to ⇤ = 4⇡f . We could instead use m⇢ to parametrize this scale, however,

here we have the situation in mind where m⇢ could be lighter than the typical resonances scale,

or the cut-o↵ scale, and our choice maximises the NP e↵ect, leading to a more conservative

bound. Moreover, being the sensitivity to this scale logarithmic, the final result only has a

mild sensitivity on this choice. The coe�cients ↵ and � are of order one and could have either

sign [19]. In the literature, a constant positive contribution to �T̂ has often been assumed to

relax the constraints from EWPT [53, 64]. However, the finite UV contributions of the form

of the last terms in eq. (4.1) arising from loops of heavy fermionic resonances always depend

on ⇠, significantly changing the EW fit compared to a constant contribution. In order to show

realistic constraints from EWPT, we define a �
2 as a function of ⇠, m⇢, ↵, �, i.e. �

2(⇠, m⇢, ↵, �),

and compute 95%CL exclusion contours in the (m⇢, ⇠) plane marginalising over ↵ and �. In

order to control the level of cancellation in the �
2 due to the contribution of the UV terms, we
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Figure 3.2: Comparison of direct and indirect searches in the (m⇢, g⇢) plane. Left panel: region up to
m⇢ = 10TeV showing the relevance of LHC direct searches at 8TeV with 20 fb�1 (LHC8), 14TeV with
300 fb�1 (LHC) and 3 ab�1 (HL-LHC); right plot: region up to m⇢ = 40TeV showing the comparison
between the LHC and FCC reach with 1 and 10 ab�1. Indirect measurements at the LHC, HL-LHC,
ILC at 500GeV with 500 fb�1 and TLEP at 350GeV with 2.6 ab�1 are shown.

kink in the limits originates from the superposition of the di-lepton and di-boson searches we

considered which, as already mentioned, is more sensitive to weak and strong g⇢, respectively.

This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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for the W
0
! WLZL and Gbulk ! WLWL signal hypotheses is found in the mass range to

1.9 < mX < 2.1 TeV, while the excess extends down to mX = 1.8 TeV for the ZLZL sig-
nal hypothesis. In these mass ranges, the ATLAS data prefer a production cross section of
⇡ 10 fb, while the CMS data favour smaller values (⇡ 3 fb) and are more consistent with the
no-signal hypothesis. The maximum-likelihood (ML) combined cross section is essentially
identical to the corresponding ATLAS value. The scan of the profiled likelihood functions
are compared in Figure 10 for mX = 2 TeV, corresponding to the largest signal significance.
Due to the large uncertainties on the signal strength, the best-fit cross-section values by
ATLAS and CMS are compatible within ±1� for W

0
! WLZL and Gbulk ! WLWL. The

compatibility is slightly reduced under the Gbulk ! ZLZL hypothesis.
In conclusion, the mild CMS excess reduce slightly the large ATLAS excess, but the

global significance stays well above 3 � for Gbulk ! WLWL and Gbulk ! ZLZL hypotheses
and close to 3 � for W

0
! WLZL. The preferred mass range for the excess after the

combination is for mX between ⇡ 1.9 and ⇡ 2 TeV.

Figure 7. Full hadronic CMS + ATLAS combined limits (black). The green (yellow) bands

represent the two sigma (one sigma) limits from our fit with the fudge factors. The read and blue

lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-only.

From left to right we show respectively the results for Gbulk ! WLWL, W
0
! WLZL and

Gbulk ! ZLZL selections and signal hypotheses.

Figure 11 shows the evolution of observed and expected limits when the signal is com-
posed by ZLZL and WLWL components.

– 12 –

Figure 8. The p-values from full hadronic CMS + ATLAS combination (black). The green (yellow)

bands represent the two sigma (one sigma) limits from our fit with the fudge factors. The red and

blue lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-

only. We also show the result of the combination without use of the fudge factors in dashed. From
left to right we show respectively the results for Gbulk ! WLWL, W

0
! WLZL and Gbulk ! ZLZL

selections and signal hypotheses.

Figure 9. Best fitted cross section for ATLAS and CMS combination in the VV ! JJ channel,

compared with the best fitted cross section from the individual results for ATLAS-only (red) and

CMS-only (blue). The green (yellow) bands represent the two sigma (one sigma) limits from our fit

with the fudge factors. From left to right we show respectively the results for Gbulk ! WLWL,

W
0
! WLZL and Gbulk ! ZLZL selections and signal hypotheses.

– 13 –

Figure 19. Combination of ATLAS and CMS in semi-leptonic channels: Top: Gbulk ! ZLZL,

Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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Figure 19. Combination of ATLAS and CMS in semi-leptonic channels: Top: Gbulk ! ZLZL,

Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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Figure 19. Combination of ATLAS and CMS in semi-leptonic channels: Top: Gbulk ! ZLZL,

Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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F. Dias et al. http://arxiv.org/abs/1512.03371
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At 8 TeV, some excess in ZW decays (in jets) mostly in ATLAS:
The ATLAS Dijet Diboson excess  
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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• ATLAS reported an excess in the Run I all-jet Diboson search 

• Excess seen at ≈2 TeV in three overlapping analyses (i.e., not 
independent results)


• 3.4� in the WZ channel, 2.6� in WW, 2.9� in ZZ


• Global significance evaluated to 2.5� after Look Elsewhere effect
ATLAS arXiv:1506.00962 
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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Spin-1 resonance searches: enhanced by large 
couplings from the 
composite sector

Glimpses at the LHC? suppressed by large couplings from the 
composite sector

δHiggs couplings↘

10
%

5%

1%

0.2%

II. Probing Compositeness: vectors 

W’ couples to SM fermions via its mixing to W:
g2SM
g⇢

http://arxiv.org/abs/1502.01701


Christophe Grojean BSM Landscape UHH, May 23, 2018!14

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Torre, Thamm, Wulzer ’15

Collider Energy Luminosity ⇠ [1�] References

LHC 14TeV 300 fb�1 6.6� 11.4⇥ 10�2 [60–62]

LHC 14TeV 3 ab�1 4� 10⇥ 10�2 [60–62]

ILC 250GeV 250 fb�1

4.8-7.8⇥10�3 [1, 62]
+ 500GeV 500 fb�1

CLIC 350GeV 500 fb�1

2.2 ⇥10�3 [62, 63]+ 1.4TeV 1.5 ab�1

+ 3.0TeV 2 ab�1

TLEP 240GeV 10 ab�1

2⇥10�3 [62]
+ 350GeV 2.6 ab�1

Table 3.1: Summary of the reach on ⇠ (see the text for the definition) for various collider options.

4 EWPT reassessment

As mentioned in the Introduction, EWPT, and in particular the oblique parameters Ŝ and T̂ ,

set some of the strongest constraints on CH models. However, as we stressed before, they su↵er

from an unavoidable model dependence, so that incalculable UV contributions can substantially

relax these constraints [19]. We believe that presenting the corresponding exclusion contours

in the previous plots without taking into account any possible UV contribution would lead to a

wrong and too pessimistic conclusion. Therefore we parametrize the new physics contributions

to Ŝ and T̂ as

�Ŝ =
g
2
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(4.1)

where the first terms represent the IR contributions due to the Higgs coupling modifications

[11], the second term in �Ŝ comes from tree-level exchange of vector resonances and the last

terms parametrize short distance e↵ects. The scale ⇤ in eq. (4) represents the scale of new

physics, which we set to ⇤ = 4⇡f . We could instead use m⇢ to parametrize this scale, however,

here we have the situation in mind where m⇢ could be lighter than the typical resonances scale,

or the cut-o↵ scale, and our choice maximises the NP e↵ect, leading to a more conservative

bound. Moreover, being the sensitivity to this scale logarithmic, the final result only has a

mild sensitivity on this choice. The coe�cients ↵ and � are of order one and could have either

sign [19]. In the literature, a constant positive contribution to �T̂ has often been assumed to

relax the constraints from EWPT [53, 64]. However, the finite UV contributions of the form

of the last terms in eq. (4.1) arising from loops of heavy fermionic resonances always depend

on ⇠, significantly changing the EW fit compared to a constant contribution. In order to show

realistic constraints from EWPT, we define a �
2 as a function of ⇠, m⇢, ↵, �, i.e. �

2(⇠, m⇢, ↵, �),

and compute 95%CL exclusion contours in the (m⇢, ⇠) plane marginalising over ↵ and �. In

order to control the level of cancellation in the �
2 due to the contribution of the UV terms, we
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e.g. 
 indirect searches at LHC over-perform direct searches for g > 4.5
 indirect searches at ILC over-perform direct searches at HL-LHC for g > 2

DY production xs of resonances decreases as 1/gρ2
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Figure 3.2: Comparison of direct and indirect searches in the (m⇢, g⇢) plane. Left panel: region up to
m⇢ = 10TeV showing the relevance of LHC direct searches at 8TeV with 20 fb�1 (LHC8), 14TeV with
300 fb�1 (LHC) and 3 ab�1 (HL-LHC); right plot: region up to m⇢ = 40TeV showing the comparison
between the LHC and FCC reach with 1 and 10 ab�1. Indirect measurements at the LHC, HL-LHC,
ILC at 500GeV with 500 fb�1 and TLEP at 350GeV with 2.6 ab�1 are shown.

kink in the limits originates from the superposition of the di-lepton and di-boson searches we

considered which, as already mentioned, is more sensitive to weak and strong g⇢, respectively.

This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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 complementarity:
  direct searches win at small couplings
 indirect searches probe new territory at 

large coupling
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for the W
0
! WLZL and Gbulk ! WLWL signal hypotheses is found in the mass range to

1.9 < mX < 2.1 TeV, while the excess extends down to mX = 1.8 TeV for the ZLZL sig-
nal hypothesis. In these mass ranges, the ATLAS data prefer a production cross section of
⇡ 10 fb, while the CMS data favour smaller values (⇡ 3 fb) and are more consistent with the
no-signal hypothesis. The maximum-likelihood (ML) combined cross section is essentially
identical to the corresponding ATLAS value. The scan of the profiled likelihood functions
are compared in Figure 10 for mX = 2 TeV, corresponding to the largest signal significance.
Due to the large uncertainties on the signal strength, the best-fit cross-section values by
ATLAS and CMS are compatible within ±1� for W

0
! WLZL and Gbulk ! WLWL. The

compatibility is slightly reduced under the Gbulk ! ZLZL hypothesis.
In conclusion, the mild CMS excess reduce slightly the large ATLAS excess, but the

global significance stays well above 3 � for Gbulk ! WLWL and Gbulk ! ZLZL hypotheses
and close to 3 � for W

0
! WLZL. The preferred mass range for the excess after the

combination is for mX between ⇡ 1.9 and ⇡ 2 TeV.

Figure 7. Full hadronic CMS + ATLAS combined limits (black). The green (yellow) bands

represent the two sigma (one sigma) limits from our fit with the fudge factors. The read and blue

lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-only.

From left to right we show respectively the results for Gbulk ! WLWL, W
0
! WLZL and

Gbulk ! ZLZL selections and signal hypotheses.

Figure 11 shows the evolution of observed and expected limits when the signal is com-
posed by ZLZL and WLWL components.

– 12 –

Figure 8. The p-values from full hadronic CMS + ATLAS combination (black). The green (yellow)

bands represent the two sigma (one sigma) limits from our fit with the fudge factors. The red and

blue lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-

only. We also show the result of the combination without use of the fudge factors in dashed. From
left to right we show respectively the results for Gbulk ! WLWL, W

0
! WLZL and Gbulk ! ZLZL

selections and signal hypotheses.

Figure 9. Best fitted cross section for ATLAS and CMS combination in the VV ! JJ channel,

compared with the best fitted cross section from the individual results for ATLAS-only (red) and

CMS-only (blue). The green (yellow) bands represent the two sigma (one sigma) limits from our fit

with the fudge factors. From left to right we show respectively the results for Gbulk ! WLWL,

W
0
! WLZL and Gbulk ! ZLZL selections and signal hypotheses.

– 13 –

Figure 19. Combination of ATLAS and CMS in semi-leptonic channels: Top: Gbulk ! ZLZL,

Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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At 8 TeV, some excess in ZW decays (in jets) mostly in ATLAS:
The ATLAS Dijet Diboson excess  
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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• ATLAS reported an excess in the Run I all-jet Diboson search 

• Excess seen at ≈2 TeV in three overlapping analyses (i.e., not 
independent results)


• 3.4� in the WZ channel, 2.6� in WW, 2.9� in ZZ


• Global significance evaluated to 2.5� after Look Elsewhere effect
ATLAS arXiv:1506.00962 
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.
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bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in

16

1.5 2 2.5 3 3.5

Ev
en

ts
 / 

10
0 

G
eV

2−10

1−10

1

10

210

310

410
Data
Background model
1.5 TeV EGM W', c = 1
2.0 TeV EGM W', c = 1
2.5 TeV EGM W', c = 1
Significance (stat)
Significance (stat + syst)

ATLAS
-1 = 8 TeV, 20.3 fbs

WZ Selection

 [TeV]jjm
1.5 2 2.5 3 3.5

Si
gn

ifi
ca

nc
e

2−
1−
0
1
2
3

(a)

1.5 2 2.5 3 3.5

Ev
en

ts
 / 

10
0 

G
eV

3−10

2−10

1−10

1

10

210

310

410
Data
Background model

 = 1PIM, k/RS1.5 TeV Bulk G
 = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)
Significance (stat + syst)

ATLAS
-1 = 8 TeV, 20.3 fbs

WW Selection

 [TeV]jjm
1.5 2 2.5 3 3.5

Si
gn

ifi
ca

nc
e

2−
1−
0
1
2
3

(b)

1.5 2 2.5 3 3.5

Ev
en

ts
 / 

10
0 

G
eV

3−10

2−10

1−10

1

10

210

310

410
Data
Background model

 = 1PIM, k/RS1.5 TeV Bulk G
 = 1PIM, k/RS2.0 TeV Bulk G

Significance (stat)
Significance (stat + syst)

ATLAS
-1 = 8 TeV, 20.3 fbs

ZZ Selection

 [TeV]jjm
1.5 2 2.5 3 3.5

Si
gn

ifi
ca

nc
e

2−
1−
0
1
2
3

(c)

Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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Spin-1 resonance searches: enhanced by large 
couplings from the 
composite sector

Glimpses at the LHC? suppressed by large couplings from the 
composite sector

δHiggs couplings↘

10
%

5%

1%

0.2%

II. Probing Compositeness: vectors 

W’ couples to SM fermions via its mixing to W:
g2SM
g⇢

http://arxiv.org/abs/1502.01701


Christophe Grojean BSM Landscape UHH, May 23, 2018!14

Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Torre, Thamm, Wulzer ’15

Collider Energy Luminosity ⇠ [1�] References

LHC 14TeV 300 fb�1 6.6� 11.4⇥ 10�2 [60–62]

LHC 14TeV 3 ab�1 4� 10⇥ 10�2 [60–62]

ILC 250GeV 250 fb�1

4.8-7.8⇥10�3 [1, 62]
+ 500GeV 500 fb�1

CLIC 350GeV 500 fb�1

2.2 ⇥10�3 [62, 63]+ 1.4TeV 1.5 ab�1

+ 3.0TeV 2 ab�1

TLEP 240GeV 10 ab�1

2⇥10�3 [62]
+ 350GeV 2.6 ab�1

Table 3.1: Summary of the reach on ⇠ (see the text for the definition) for various collider options.

4 EWPT reassessment

As mentioned in the Introduction, EWPT, and in particular the oblique parameters Ŝ and T̂ ,

set some of the strongest constraints on CH models. However, as we stressed before, they su↵er

from an unavoidable model dependence, so that incalculable UV contributions can substantially

relax these constraints [19]. We believe that presenting the corresponding exclusion contours

in the previous plots without taking into account any possible UV contribution would lead to a

wrong and too pessimistic conclusion. Therefore we parametrize the new physics contributions

to Ŝ and T̂ as

�Ŝ =
g
2

96⇡2
⇠ log

✓
⇤

mh

◆
+

m
2
W

m2
⇢
+ ↵

g
2

16⇡2
⇠ ,

�T̂ = �
3g0 2

32⇡2
⇠ log

✓
⇤

mh

◆
+ �

3y2t
16⇡2

⇠ ,

(4.1)

where the first terms represent the IR contributions due to the Higgs coupling modifications

[11], the second term in �Ŝ comes from tree-level exchange of vector resonances and the last

terms parametrize short distance e↵ects. The scale ⇤ in eq. (4) represents the scale of new

physics, which we set to ⇤ = 4⇡f . We could instead use m⇢ to parametrize this scale, however,

here we have the situation in mind where m⇢ could be lighter than the typical resonances scale,

or the cut-o↵ scale, and our choice maximises the NP e↵ect, leading to a more conservative

bound. Moreover, being the sensitivity to this scale logarithmic, the final result only has a

mild sensitivity on this choice. The coe�cients ↵ and � are of order one and could have either

sign [19]. In the literature, a constant positive contribution to �T̂ has often been assumed to

relax the constraints from EWPT [53, 64]. However, the finite UV contributions of the form

of the last terms in eq. (4.1) arising from loops of heavy fermionic resonances always depend

on ⇠, significantly changing the EW fit compared to a constant contribution. In order to show

realistic constraints from EWPT, we define a �
2 as a function of ⇠, m⇢, ↵, �, i.e. �

2(⇠, m⇢, ↵, �),

and compute 95%CL exclusion contours in the (m⇢, ⇠) plane marginalising over ↵ and �. In

order to control the level of cancellation in the �
2 due to the contribution of the UV terms, we
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e.g. 
 indirect searches at LHC over-perform direct searches for g > 4.5
 indirect searches at ILC over-perform direct searches at HL-LHC for g > 2

DY production xs of resonances decreases as 1/gρ2

2 4 6 8 10
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m� [TeV]

g�

�=
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HC

ILC

TLEP / CLIC

LHC8

LHC

HL-LHC

Figure 3.2: Comparison of direct and indirect searches in the (m⇢, g⇢) plane. Left panel: region up to
m⇢ = 10TeV showing the relevance of LHC direct searches at 8TeV with 20 fb�1 (LHC8), 14TeV with
300 fb�1 (LHC) and 3 ab�1 (HL-LHC); right plot: region up to m⇢ = 40TeV showing the comparison
between the LHC and FCC reach with 1 and 10 ab�1. Indirect measurements at the LHC, HL-LHC,
ILC at 500GeV with 500 fb�1 and TLEP at 350GeV with 2.6 ab�1 are shown.

kink in the limits originates from the superposition of the di-lepton and di-boson searches we

considered which, as already mentioned, is more sensitive to weak and strong g⇢, respectively.

This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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A combination of VV searches
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for the W
0
! WLZL and Gbulk ! WLWL signal hypotheses is found in the mass range to

1.9 < mX < 2.1 TeV, while the excess extends down to mX = 1.8 TeV for the ZLZL sig-
nal hypothesis. In these mass ranges, the ATLAS data prefer a production cross section of
⇡ 10 fb, while the CMS data favour smaller values (⇡ 3 fb) and are more consistent with the
no-signal hypothesis. The maximum-likelihood (ML) combined cross section is essentially
identical to the corresponding ATLAS value. The scan of the profiled likelihood functions
are compared in Figure 10 for mX = 2 TeV, corresponding to the largest signal significance.
Due to the large uncertainties on the signal strength, the best-fit cross-section values by
ATLAS and CMS are compatible within ±1� for W

0
! WLZL and Gbulk ! WLWL. The

compatibility is slightly reduced under the Gbulk ! ZLZL hypothesis.
In conclusion, the mild CMS excess reduce slightly the large ATLAS excess, but the

global significance stays well above 3 � for Gbulk ! WLWL and Gbulk ! ZLZL hypotheses
and close to 3 � for W

0
! WLZL. The preferred mass range for the excess after the

combination is for mX between ⇡ 1.9 and ⇡ 2 TeV.

Figure 7. Full hadronic CMS + ATLAS combined limits (black). The green (yellow) bands

represent the two sigma (one sigma) limits from our fit with the fudge factors. The read and blue

lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-only.

From left to right we show respectively the results for Gbulk ! WLWL, W
0
! WLZL and

Gbulk ! ZLZL selections and signal hypotheses.

Figure 11 shows the evolution of observed and expected limits when the signal is com-
posed by ZLZL and WLWL components.
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Figure 8. The p-values from full hadronic CMS + ATLAS combination (black). The green (yellow)

bands represent the two sigma (one sigma) limits from our fit with the fudge factors. The red and

blue lines correspond to the observed and expected limits respectively of ATLAS-only and CMS-

only. We also show the result of the combination without use of the fudge factors in dashed. From
left to right we show respectively the results for Gbulk ! WLWL, W

0
! WLZL and Gbulk ! ZLZL

selections and signal hypotheses.

Figure 9. Best fitted cross section for ATLAS and CMS combination in the VV ! JJ channel,

compared with the best fitted cross section from the individual results for ATLAS-only (red) and

CMS-only (blue). The green (yellow) bands represent the two sigma (one sigma) limits from our fit

with the fudge factors. From left to right we show respectively the results for Gbulk ! WLWL,

W
0
! WLZL and Gbulk ! ZLZL selections and signal hypotheses.
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Figure 19. Combination of ATLAS and CMS in semi-leptonic channels: Top: Gbulk ! ZLZL,

Middle: Gbulk ! WLWL. The results of the combination (black) are compared with individual

ATLAS-only (red) and CMS-only (blue). Bottom: W’. Left: Expected (dashed) and observed

(continuous) limits. The green (yellow) bands represent the two sigma (one sigma) limits for the

ATLAS and CMS combination when the fudge factors are included in limits setting. Right p-value

to the ATLAS and CMS combination including the fudge factors in limits setting (continuous), and

not including them (dashed).
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At 8 TeV, some excess in ZW decays (in jets) mostly in ATLAS:
The ATLAS Dijet Diboson excess  
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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• ATLAS reported an excess in the Run I all-jet Diboson search 

• Excess seen at ≈2 TeV in three overlapping analyses (i.e., not 
independent results)


• 3.4� in the WZ channel, 2.6� in WW, 2.9� in ZZ


• Global significance evaluated to 2.5� after Look Elsewhere effect
ATLAS arXiv:1506.00962 
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Spin-1 resonance searches: enhanced by large 
couplings from the 
composite sector

Glimpses at the LHC? suppressed by large couplings from the 
composite sector

δHiggs couplings↘

10
%

5%

1%

0.2%

II. Probing Compositeness: vectors 

W’ couples to SM fermions via its mixing to W:
g2SM
g⇢
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m� [TeV]

g�

�=
1

LH
C

H
L-
LH
C

H
L-LH

C

FCC-1ab -1
FCC-10ab -1

IL
C

TL
EP

/ C
LIC

Figure 3.2: Comparison of direct and indirect searches in the (m⇢, g⇢) plane. Left panel: region up to
m⇢ = 10TeV showing the relevance of LHC direct searches at 8TeV with 20 fb�1 (LHC8), 14TeV with
300 fb�1 (LHC) and 3 ab�1 (HL-LHC); right plot: region up to m⇢ = 40TeV showing the comparison
between the LHC and FCC reach with 1 and 10 ab�1. Indirect measurements at the LHC, HL-LHC,
ILC at 500GeV with 500 fb�1 and TLEP at 350GeV with 2.6 ab�1 are shown.

kink in the limits originates from the superposition of the di-lepton and di-boson searches we

considered which, as already mentioned, is more sensitive to weak and strong g⇢, respectively.

This is due to the fact that, while the coupling to fermions decreases, the one to (longitudinal)

gauge bosons increases like g⇢ and the di-boson BR rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected. An

increase of the collider energy improves the mass reach dramatically, and in particular only

the 100TeV FCC can access the multi–TeV region. An increase in luminosity, instead, has a

marginal e↵ect on the mass reach but considerably extends the sensitivity in the large g⇢ (i.e.,

small rate) direction. In particular we see that the impact of the high luminosity extension of

the LHC is considerable given that largish values of the g⇢ coupling are perfectly plausible in

the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling to

vector bosons. The 1� (68%CL) error on ⇠ (i.e., twice the one on kV ' 1 � ⇠/2) obtainable

for di↵erent collider options, as extracted from currently available literature, are summarised

in table 3.1. Twice those values, which in the assumption of gaussian statistics corresponds to

the 95%CL limits on ⇠, are reported in figures 3.2 and 3.3 as black dashed curves, with the

excluded region sitting above the lines. In the (m⇢, ⇠) plane, the limits simply corresponds to

horizontal lines and translate into straight lines with varying inclination in the (m⇢, g⇢) plane.

In particular, we show the LHC reach with 300 fb�1 and 3 ab�1, obtained from single Higgs

production, corresponding to ⇠ > 0.13 and ⇠ > 0.08 respectively, and the expected reach of the

ILC and TLEP at
p

s = 500GeV and
p

s = 350GeV corresponding to ⇠ > 0.01 and ⇠ > 0.004.
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Neutral naturalness
Higgs couplings: accustomed to looking for corrections 
to loop-level couplings (h → γγ, gg), but even loops of 

neutral states can be seen. 
[NC, Englert, McCullough; Henning, Lu, Murayama; NC, Farina, McCullough, Perelstein]

cH

m
2
�

�
@µ|H|2

�2 ! ��Zh = �2cH
v
2

m
2
�

Direct searches: states lighter than mh/2 easily 
constrained by Higgs width; if heavier than mh/2, 
can still produce via an off-shell Higgs. Look for 

associated production + invisible. 
[Curtin, Meade, Yu; NC, Lou, McCullough, Thalapillil]  
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Neutral naturalness (invisible?) @ LHC
aka twin Higgs
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“Looking and not finding is different than not looking”
giving the null search results, the top partners should either be

‣heavy (harder to produce because of phase space)
‣stealthy (easy to produce but hard to distinguish from background, e.g.  mstop~mtop)
‣colorless (hard to produce, unusual decay)

Neutral Naturalness
• Top partners are color neutral 

• Charged under a different, ‘mirror’, color 

• Have a discrete symmetry  
that does not commute with SM color 

• Prime examples are Twin Higgs,  
Folded SUSY, and Quirky Little Higgs 

• Span much of the NN model space

Scalar  
Top Partner

Fermion 
Top Partner

All SM 
Charges SUSY pNGB/RS

EW 
Charges

Folded 
SUSY

Quirky 
Little Higgs

No SM 
Charges ??? Twin Higgs

require hidden QCD
with a higher confining scale:

⇒ 1) hidden glueball (0++) that can mix with Higgs
h➛G0G0➛4l with displaced vertices

⇒ 2) emerging jets
}

need to go beyond
traditional searches  

(C. Verhaaren@
N

K
PI’16)

Curtin, Verhaaren ’15

Schwaller, Stolarski, Weiler ’15

only little corner
of theory/model space

has been explored so far 

III. Other Naturalness

http://indico.cern.ch/event/441629/
http://arxiv.org/abs/1506.06141
http://arxiv.org/abs/1502.05409
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III. Other Naturalness

Last
model building 
opportunities 

filled up recently 

TUM-HEP-1134-18

Singlet Scalar Top Partners

from Accidental Supersymmetry

Hsin-Chia Cheng,1, 2 Lingfeng Li,1 Ennio Salvioni,3 and Christopher B. Verhaaren1, ⇤

1Center for Quantum Mathematics and Physics (QMAP), Department of Physics,

University of California, Davis, California, 95616, USA

2School of Natural Sciences, Institute for Advanced Study,

Princeton, New Jersey 08540, USA

3Physik-Department, Technische Universität München, 85748 Garching, Germany

Abstract

We present a model wherein the Higgs mass is protected from the quadratic one-loop top quark

corrections by scalar particles that are complete singlets under the Standard Model (SM) gauge

group. While bearing some similarity to Folded Supersymmetry, the construction is purely four

dimensional and enjoys more parametric freedom, allowing electroweak symmetry breaking to

occur easily. The cancelation of the top loop quadratic divergence is ensured by a Z3 symmetry

that relates the SM top sector and two hidden top sectors, each charged under its own hidden

color group. In addition to the singlet scalars, the hidden sectors contain electroweak-charged

supermultiplets below the TeV scale, which provide the main access to this model at colliders.

The phenomenology presents both di↵erences and similarities with respect to other realizations

of neutral naturalness. Generally, the glueballs of hidden color have longer decay lengths. The

production of hidden sector particles results in quirk or squirk bound states, which later annihilate.

We survey the possible signatures and corresponding experimental constraints.

⇤ Email: cheng@physics.ucdavis.edu; llfli@ucdavis.edu; ennio.salvioni@tum.de; cbverhaaren@ucdavis.edu
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The Hyperbolic Higgs

Timothy Cohen,
a
Nathaniel Craig,

b
Gian F. Giudice,

c
and Matthew McCullough

c

aInstitute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA
bDepartment of Physics, University of California, Santa Barbara, CA 93106, USA
cTheoretical Physics Department, CERN, Geneva, Switzerland

Abstract: We introduce the Hyperbolic Higgs, a novel solution to the little hierar-

chy problem that features Standard Model neutral scalar top partners. At one-loop

order, the protection from ultraviolet sensitivity is due to an accidental non-compact

symmetry of the Higgs potential that emerges in the infrared. Once the general

features of the e↵ective description are detailed, a completion that relies on a five

dimensional supersymmetric framework is provided. Novel phenomenology is com-

pared and contrasted with the Twin Higgs scenario.
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Exotic Higgs Decays
• Occurs whenever the hidden sector does not have light states 

• Guaranteed for EW charged top partners, can occur in Fraternal TH 

• Displaced decays on detector length scales
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Figure 11. Summary of discovery potential at LHC run 1, LHC14 with 300 fb�1, HL-LHC and 100 TeV
if the searches in Table 4, or similar, are approximately background-free, and ⇠ 10 events allow for dis-
covery. We omit the HCAL search since it likely is not background-free. Note different scaling of vertical
axes. For comparison, the inclusive TLEP h ! invisible limit, as applied to the perturbative prediction for
Br(h ! all glueballs), is shown for future searches as well. Lighter and darker shading correspond to the
optimistic (pessimistic) signal estimates  = max (min), under the assumption that h decays dominantly to
two glueballs. Effect of glueball lifetime uncertainty is small and not shown. m0 is the mass of the lightest
glueball 0++; the vertical axes correspond to mirror stop mass in Folded SUSY (see Eq. (3.8)) and mirror top
mass in Twin Higgs and Quirky Little Higgs (see Eq. (3.12)). Vertical solid (dashed) lines show where  might
be enhanced (suppressed) due to non-perturbative mixing effects, see Section 3.5.

pointed out explicitly in [57] with a primary focus on the Fraternal Twin Higgs model, is in fact the
smoking gun for models with electroweak-charged mirror sectors.

– 30 –

Exotic Higgs decays 
with displaced vertices

Curtin, Verhaaren ’15

III. Neutral Naturalness
top parters are EW charged: m>100GeV (LEP)

Lightest hidden states are glueballs of QCD’
that can mix with the Higgs boson 

SM glueball spectrum 
Chen et al., 2005

Hidden sector confinement

•  Hidden QCD confines at few GeV 

•  No light matter, low-energy spectrum  
    is made of glueballs 

•  Lightest glueball has JPC = 0++, decays 
    to SM via mixing with the Higgs 

•  Lifetime is much longer than e.g. in Folded SUSY (~ mm) 

•  Large uncertainty due to dependence on subleading soft masses
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III. Singlet scalar top partners

mass
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Spectrum of BSM states
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SM-colored stops

SM-singlet stops

EW-doublet supermultiplets

Glueballs of hidden color

?

Same pheno as twin Higgs/folded susy

Rich opportunities for B2G

Cheng, Li, Savlioni, Verhaaren ’18

! > " : quirk phenomenology

•  If              ,  then target are the EW-doublet supermultiplets with mass 

•  Fermions have larger Drell-Yan production than scalars, 

� > !
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“quirky” 
bound state

de-excites down to ground state 
via emission of soft photons

(electrically-neutral pairs too, 
via mass mixing)
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IV. New Physics hints from FlavourCharged and neutral currents
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q2 = di-lepton invariant mass

• b→ sℓ+ℓ− transitions are flavour-changing neutral currents and only

occur on loop-level in the StandardModel

• In the past years, many interesting deviations from the SM predictions have

appeared in several b→ sℓ+ℓ− channels, observed by different

experiments.

• More anomalous results appeared in charged current b→ c decays.

• Together they form the so-called ”B anomalies”

• All results shown are with the Run I data set (3 fb−1) of LHCb. 3
15

b→ sℓ+ℓ−: Branching fractions
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[theo. predictions: see exp. papers]

• Manymeasurements are below the SM prediction
4
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Angular analysis of B0→ K∗0µ+µ− (III)
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[theo. predictions: see exp. papers]

• P ′
5 =

S5√
1−FL

• TheP ′
i observables are less prone to hadronic form-factor uncertainties

than theSi ones.

• Measurements also by Belle, CMS, ATLAS, albeit with less statistical power.

• Global significance is about 3.4σ from the SM (LHCbmeasurement alone).

8
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Lepton Flavour Universality in B+→ K+ℓℓ
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[PRL 113, 151601 (2014)]
[theo. prediction: see exp. paper]

• MeasureRK = B(B+→K+µ+µ−)
B(B+→K+e+e−) in q2 ∈ [1, 6]GeV2/c4

• UseB+→ J/ψK+,J/ψ→ ℓℓ as normalization and control channel.

• Electrons aremore challenging thanmuons, due to lower reconstruction

efficiency and energy loss due to bremsstrahlung.

• Hadronic uncertainties cancel in the ratio.

• 2.6σ deviation from the SM,

B(B+→ K+e+e−) compatible with SM predictions.
10
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LFU in B0→ K∗0ℓℓ
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[theo. predictions: see exp. paper]

• ConsiderRK∗ = B(B0→K∗0µ+µ−)
B(B0→K∗0e+e−)

• Similar strategy as forRK . UseB0→ J/ψK∗,J/ψ→ ℓℓ as
normalization and control channel.

• Compatible at 2.2 and 2.4σ with SMprediction for low and intermediate q2

region.

11
15

LFU violation

BR
Angular distributions

Summary

TheB anomalies are alive andwell!

• Deviations from the SM appeared in the last years in observables in

b→ sℓ+ℓ− and semileptonic decays in LHCb.

• Theywere confirmed bymeasurements from other experiments.

• The deviations show a consistent pattern and in combination (might)

become significant (see Sebastian’s talk on Thursday).

• Many updates from LHCb (RK,K∗,D,D∗ , angular analysis of

B0→ K∗0µ+µ−,B0→ K∗0e+e−) will come up in the near future.
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Figure 5: Present and future-projected LHC constraints on the vector leptoquark model of Section 3.1.
The 1� and 2� preferred regions from the low-energy fit are shown in green and yellow, respectively.

not least, this LQ representation does not allow baryon number violating operators of dimension
four. These features, and the absence of a tree-level contribution to Bs(d) meson-antimeson
mixing, makes this UV realisation, originally proposed in [17], particularly appealing: the best
fit points of the general fit in Section 2.2 can be recovered essentially without tuning of the
model parameters.

In Figure 4 we show the results of the flavour fit in this parametrisation (using the �i↵
rather than the �q(`)

ij(↵�) as free parameters). When marginalising we let �s⌧ and �sµ vary between

±5|Vcb| and impose |�bµ| < 0.5. We find very similar conclusions to the previous fit, in particular
a reduced value of CU thanks to the extra contribution to R⌧`

D(⇤) proportional to �s⌧ , with both
this parameter and �sµ of O(|Vcb|).

Despite being absent at the tree level, a contribution to �F = 2 amplitudes is generated in
this model at the one-loop level. The result thus obtained is quadratically divergent and therefore
strongly dependent on the UV completion. Following the analysis of Ref. [17], i.e. setting a hard
cut-o↵ ⇤ on the quadratically divergent �F = 2 (down-type) amplitudes, leads to

�L(�B=2) = C(U)
0

(V ⇤
tb
Vti)2

32⇡2v2
�
b̄L�µd

i

L

�2
, C(U)

0 = C2
U

✓
�q

bs

Vts

◆2
⇤2

2v2
. (10)

As already pointed out in Section 2.3, the value of C(U)
0 should not exceed O(10%) given the

experimental constraints on �MBs,d (for comparison, C(SM)
0 = (4⇡↵/s2

W
)S0(xt) ⇡ 1.0, see Ap-

pendix B). This can be achieved only for ⇤ ⇠ few TeV – i.e. ⇤ not far from MU , as expected in a
strongly interacting regime (unless some specific cancellation mechanism of �F = 2 amplitudes
is present in the UV). Interestingly enough, for fixed ⇤, the large value of �q

bs
does not increase

13
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Figure 17: Feynman diagrams relevant for a pair production of scalar LQs at hadron colliders.
Representative diagram for a gluon-gluon fusion (quark-antiquark annihilation) process is
shown in the upper left (right) panel. The diagram in the lower panel represents a t-channel
production mechanism. Here, yij , i, j = 1, 2, 3, represents appropriate Yukawa coupling of a
quark (qi) and a lepton (lj) with an LQ.
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Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2

 2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ

1 ⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = �
1

2
U †
1,µ⌫U

1,µ⌫ +M2
UU

†
1,µU

µ

1 + gU (J
µ

U
U1,µ + h.c.) , (7)

Jµ

U
⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)
i↵

= �3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour
structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

Le↵ � �
1

v2
CU �i↵�

⇤
j�

h
(Q̄i

L�µ�
aQj

L
)(L̄�

L
�µ�aL↵

L) + (Q̄i

L�µQ
j

L
)(L̄�

L
�µL↵

L)
i
, (9)

where CU = v2|gU |2/(2M2
U
) > 0. Note that in this case the singlet and triplet operators have

the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but
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(Zq̄q)ij ⇠

0

@
1 0 0

0 1 V
⇤
ts

0 Vts 1

1

A , CDµ
ij =

0

@
Cdµ 0 0

0 Csµ C
⇤
bsµ

0 Cbsµ Cbµ

1

A . (30)

c
(1)
QL ⇠ g

2
⇤ (31)

pp ! µ
+
µ
�

(32)

pp ! ⌧
+
⌧
�

(33)

5

5

B(U ! t⌫) = B(U ! b⌧) = 0.5. Revisiting the AT-
LAS search [32] for QCD pair-produced third generation
scalar leptoquark in the tt̄⌫⌫̄ channel, Ref. [20], excludes
MU < 770 GeV. For large �ij , limits from leptoquark pair
production are even more stringent due to extra contribu-
tions from diagrams with leptons in the t�channel [33].

Integrating out the heavy Uµ field at the tree level, the
following e↵ective dimension six interaction is generated

L
e↵
U

= �
1

M
2
U

J
µ†
U
J
µ

U
. (10)

Using Fierz identities to match the above expression onto
the operator basis in Eq. (3), one finds

Le↵
U

= �
�il�

†
kj

2M
2
U

[(Q̄i�µ�
a
Qj)(L̄k�

µ
�aLl) + (Q̄i�µQj)(L̄k�

µ
Ll)] ,

(11)

which finally leads to

L
e↵
U

� �
|gU |

2

M
2
U

⇥
Vcb(c̄L�

µ
bL)(⌧̄L�µ⌫L) + (b̄L�

µ
bL)(⌧̄L�µ⌧L)

⇤
.

(12)
The fit to R(D(⇤)) anomaly requires |gU |

2
/M

2
U

⌘

2|c
QQLL

| ' (4.3 ± 1.0) TeV�2. As a consequence, size-

able b b̄ ! ⌧
+
⌧
� signal at LHC is induced via t-channel

vector LQ exchange. A recast of existing ⌧
+
⌧
� searches

in this model is presented in the Section IVB 4.

D. Scalar Leptoquark

Finally, we analyze a model recently proposed in
Ref. [34], in which the SM is supplemented by a scalar
leptoquark weak doublet, � ⌘ (3,2, 1/6) and a fermionic
SM singlet (⌫R),4 with the following Yukawa interactions,

L� � Y
ij

L
d̄i(i�2�

⇤)†Lj + Y
i⌫

R
Q̄i�⌫R + h.c. . (13)

The mass of the fermionic singlet is assumed to be be-
low the experimental resolution of the semi-tauonic B

decay measurements, such that the excess of events is ex-
plained via the LQ mediated contribution with ⌫R in the
final state. Following Ref. [34], the R(D(⇤)) anomaly can
be accommodated provided the model parameters (eval-
uated at mass scale of the leptoquark µR ⇠ 0.5 � 1 TeV)
take values respecting

✓
Y

b⌫

R
Y

b⌧⇤
L

g2
w

◆✓
MW

M�

◆2

= 1.2 ± 0.3, (14)

(see Fig. [1] in [34]) where gw ' 0.65 and MW ' 80 GeV
are the SM weak gauge coupling and W boson mass,
respectively. Considering an exhaustive set of flavor con-
straints, Ref. [34] finds that Y

s⌧

L
, Y

sµ

L
and Y

s⌫

R
are in

4
The case of several ⌫R is a trivial generalization which does not

a↵ect our main results.

general constrained to be small, and we therefore do not
consider them in our subsequent analysis.

The �(2/3) component decays dominantly to b⌧ and
t⌫, while �(1/3) decays to the b⌫ final state. As in the
vector leptoquark case, QCD pair production can again
be used to obtain constraints on the leptoquark mass
M�. In particular, ATLAS [32] excludes at 95% CL
pair-produced third-generation scalar leptoquarks decay-
ing exclusively to bb̄⌫⌫̄ for M� < 625 GeV and tt̄⌫⌫̄ for
M� < 640 GeV, respectively. In addition, CMS [35] ex-
cludes at 95% CL M� < 900 GeV scalar leptoquarks
decaying exclusively to ⌧ leptons and b quarks. Con-
sequently, relatively large couplings are required in or-
der to accommodate the R(D(⇤)) anomaly. For example,
M� = 650 GeV, implies |Y

b⌫

R
Y

b⌧

L
| = 34 ± 9. Imposing a

(conservative) perturbativity condition on all partial de-
cay widths �(� ! qi`j)/M� . 1, leads to |Y

ij

L,R
| . 7.1.

In this model the R(D(⇤)) resolution involves a light
⌫R and thus cannot be matched onto the SM EFT in
Eq. (3). Nonetheless, sizable bb̄ ! ⌧⌧ production at LHC
is generated via t-channel � exchange, and can e↵ectively
constrain |Y

b⌧

L
| (see Section IV B 4). A restrictive enough

bound in conjunction with Eq. (14) can in turn drive the
Y

b⌫

R
coupling into the non-perturbative regime.

IV. SENSITIVITY OF EXISTING LHC
SEARCHES

In the following, we perform a recast of several exper-
imental searches employing the ⌧

+
⌧
� signature at the

LHC, to set limits on the EFT operators introduced in
Eq. (3) as well as on the corresponding simplified models
described in the previous section as possible UV comple-
tions beyond the EFT. These constraints are compared to
the preferred regions of parameter space accommodating
the R(D(⇤)) anomalies.

A. Recast of ⌧⌧ resonance searches

ATLAS (8 TeV, 19.5 fb�1): The ATLAS collabo-
ration has performed a search for narrow resonances de-
caying to the ⌧

�
⌧
+ final state at 8 TeV pp collisions with

19.5 � 20.3 fb�1 of data [36]. The details of the analysis
and our recast methods are described in the Appendix.
We rely on the o�cial statistical analysis performed by
the ATLAS collaboration. In particular, the observed
95% CL upper limits on the allowed signal yields in the
final selection bins are obtained by rescaling the observed
95% CL upper limits on the production cross-section for
the Sequential SM (SSM) as reported in Fig. 8 of [36].
The rescaling factors are the signal event yields reported
in Table 4 of [36] divided by the predicted cross-section in
SSM from Fig. 8 of [36]. In particular, for the final selec-
tion bins defined with m

tot
T

> 400, 500, 600, 750 and 850
GeV, the excluded number of signal events at 95% CL
are Nevs > 21, 11, 5.3, 3.3 and 3.4, respectively. Here the
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IV. New Physics hints from Flavour

3

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.
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Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

Essentials of (most) models
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98
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The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108
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=
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×
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∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
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=
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, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71
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decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75
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Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91
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corrections are universal among muons and electrons, pre- 123

dicting RSM
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an illustration, in Fig. 1 we show the predictions for this 125

observable at
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s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134
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If NP in muons  
V-A vector operator significant!

1 Introduction

One of the most interesting phenomena reported by particle physics experiments in the last few
years are the numerous hints of Lepton Flavour Universality (LFU) violations observed in semi-
leptonic B decays. The very recent LHCb results on the LFU ratios Rµe

K(⇤) [1] and R⌧`

D(⇤) [2] are
the last two pieces of a seemingly coherent set of anomalies which involves di↵erent observables
and experiments. So far, not a single LFU ratio measurement exhibits a deviation with respect
to the Standard Model (SM) above the 3� level. However, the overall set of observables is very
consistent and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the
underlying quark-level transition:

• deviations from ⌧/µ (and ⌧/e) universality in b ! c`⌫̄ charged currents [2–5];

• deviations from µ/e universality in b ! s`` neutral currents [1, 6].

In both cases the combination of the results leads to an evidence around the 4� level for LFU
violating contributions of non-SM origin, whose size is O(10%) compared to the corresponding
charged- or neutral-current SM amplitudes. Furthermore, a strong evidence for a deviation from
the SM prediction has been observed by LHCb in the angular distribution of the B0

! K⇤0µ+µ�

decay [7,8], which is consistent with the deviations from LFU in neutral-current B decays [9,10].
These deviations from the SM have triggered a series of theoretical speculations about pos-

sible New Physics (NP) interpretations. Attempts to provide a combined/coherent explanation
for both charged- and neutral-current anomalies have been presented in Refs. [11–29]. A com-
mon origin of the two set of anomalies is not obvious, but is very appealing since: i) in both
types of semi-leptonic B-meson decays (charged and neutral) we are dealing with a violation of
LFU; ii) in both cases data favours left-handed e↵ective interactions that, due to the SM gauge
symmetry, naturally suggest a connection between charged and neutral currents.

One of the puzzling aspects of the present anomalies is that they have been observed only
in semi-leptonic B decays and are quite large compared to the corresponding SM amplitudes.
On the contrary, no evidence of deviation from the SM has been seen so far in the precise
(per-mil) tests of LFU in semi-leptonic K and ⇡ decays, purely leptonic ⌧ decays, and in the
electroweak precision observables. The most natural assumption to address this apparent para-
dox is the hypothesis that the NP responsible for the breaking of LFU is coupled mainly to
the third generation of quarks and leptons, with a small (but non-negligible) mixing with the
light generations [13, 25, 30]. This hypothesis also provides a natural first-order explanation for
the di↵erent size of the two e↵ects, which compete with a tree-level SM amplitude in charged
currents, and with a suppressed loop-induced SM amplitude in neutral currents, respectively.
Within this paradigm, a class of particularly motivated models includes those which are based
on a U(2)q⇥U(2)` flavour symmetry acting on the light generations of SM fermions [31,32], and
new massive bosonic mediators around the TeV scale: colour-less vector SU(2)L-triplets (W 0,
B0) [13], vector SU(2)L-singlet or -triplet leptoquarks (LQ) [17], or scalar SU(2)L-singlet and
-triplet leptoquarks. Besides providing a good description of low-energy data, these mediators
could find a consistent UV completion in the context of strongly-interacting theories with new
degrees of freedom at the TeV scale [23, 24].
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V-A triplet operator 
The most elegant solution!
*Not unique: Very few other options

4

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.
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Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

Essentials of (most) models
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matrices acting on SU (2)L space.90
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Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100
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in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115
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prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118
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2
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which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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If NP in muons  
V-A vector operator significant!

1 Introduction

One of the most interesting phenomena reported by particle physics experiments in the last few
years are the numerous hints of Lepton Flavour Universality (LFU) violations observed in semi-
leptonic B decays. The very recent LHCb results on the LFU ratios Rµe

K(⇤) [1] and R⌧`

D(⇤) [2] are
the last two pieces of a seemingly coherent set of anomalies which involves di↵erent observables
and experiments. So far, not a single LFU ratio measurement exhibits a deviation with respect
to the Standard Model (SM) above the 3� level. However, the overall set of observables is very
consistent and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the
underlying quark-level transition:

• deviations from ⌧/µ (and ⌧/e) universality in b ! c`⌫̄ charged currents [2–5];

• deviations from µ/e universality in b ! s`` neutral currents [1, 6].

In both cases the combination of the results leads to an evidence around the 4� level for LFU
violating contributions of non-SM origin, whose size is O(10%) compared to the corresponding
charged- or neutral-current SM amplitudes. Furthermore, a strong evidence for a deviation from
the SM prediction has been observed by LHCb in the angular distribution of the B0

! K⇤0µ+µ�

decay [7,8], which is consistent with the deviations from LFU in neutral-current B decays [9,10].
These deviations from the SM have triggered a series of theoretical speculations about pos-

sible New Physics (NP) interpretations. Attempts to provide a combined/coherent explanation
for both charged- and neutral-current anomalies have been presented in Refs. [11–29]. A com-
mon origin of the two set of anomalies is not obvious, but is very appealing since: i) in both
types of semi-leptonic B-meson decays (charged and neutral) we are dealing with a violation of
LFU; ii) in both cases data favours left-handed e↵ective interactions that, due to the SM gauge
symmetry, naturally suggest a connection between charged and neutral currents.

One of the puzzling aspects of the present anomalies is that they have been observed only
in semi-leptonic B decays and are quite large compared to the corresponding SM amplitudes.
On the contrary, no evidence of deviation from the SM has been seen so far in the precise
(per-mil) tests of LFU in semi-leptonic K and ⇡ decays, purely leptonic ⌧ decays, and in the
electroweak precision observables. The most natural assumption to address this apparent para-
dox is the hypothesis that the NP responsible for the breaking of LFU is coupled mainly to
the third generation of quarks and leptons, with a small (but non-negligible) mixing with the
light generations [13, 25, 30]. This hypothesis also provides a natural first-order explanation for
the di↵erent size of the two e↵ects, which compete with a tree-level SM amplitude in charged
currents, and with a suppressed loop-induced SM amplitude in neutral currents, respectively.
Within this paradigm, a class of particularly motivated models includes those which are based
on a U(2)q⇥U(2)` flavour symmetry acting on the light generations of SM fermions [31,32], and
new massive bosonic mediators around the TeV scale: colour-less vector SU(2)L-triplets (W 0,
B0) [13], vector SU(2)L-singlet or -triplet leptoquarks (LQ) [17], or scalar SU(2)L-singlet and
-triplet leptoquarks. Besides providing a good description of low-energy data, these mediators
could find a consistent UV completion in the context of strongly-interacting theories with new
degrees of freedom at the TeV scale [23, 24].
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Triplet - Singlet adjustment

Figure 3: Fit to R(D(⇤)) and RK(⇤)⌫ for the triplet V-A operator. Preferred region at 1� and 2� is
shown in green and yellow. In addition, the constraint from Bs mixing in W

0 model assuming gq = g`/6
is shown with solid and dotted lines.
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|�
q
sb| . 0.1|Vts| (22)

Let us consider the gauge group G ⌘ SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥U(1)0, and denote respec-
tively by H

↵
µ , G

0a
µ ,W

i
µ, B

0
µ the gauge fields, g4, g3, g2, g1 the gauge couplings and T

↵
, T

a
, T

i
, Y

0

the generators, with indices ↵ = 1, . . . , 15, a = 1, . . . , 8, i = 1, 2, 3.
The color and hypercharge factors of the SM group GSM ⌘ SU(3)c⇥SU(2)L⇥U(1)Y are em-

bedded in the following way: SU(3)c = (SU(3)4 ⇥ SU(3)0)diag and U(1)Y = (U(1)4 ⇥ U(1)0)diag,

where SU(3)4⇥U(1)4 ⇢ SU(4). In particular, Y =
q

2
3T

15+Y
0, with T

15 = 1
2
p
6
diag(1, 1, 1,�3).

Bs $ B̄s (23)

References

[1] A. Greljo, G. Isidori and D. Marzocca, JHEP 1507, 142 (2015) doi:10.1007/JHEP07(2015)142
[arXiv:1506.01705 [hep-ph]].

[2] R. Barbieri, G. Isidori, A. Pattori and F. Senia, Eur. Phys. J. C 76, no. 2, 67 (2016) doi:10.1140/epjc/s10052-
016-3905-3 [arXiv:1512.01560 [hep-ph]].

[3] Pablo Goldenzweig, talk at the Moriond 2016.

5

Suppression in 4Q and 4L operators

Example: Leptoquark

Semileptonic 
Tree-level

Needs a dynamical suppression 

A. Greljo @ Zurich WS ‘18

https://indico.cern.ch/event/667965/contributions/2787576/attachments/1583613/2503027/greljo-2018-ZPW.pdf


Christophe Grojean BSM Landscape UHH, May 23, 2018!21

IV. New Physics hints from Flavour

3

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.

SM
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Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90
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actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93
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The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108
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×
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∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
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/
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=
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, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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If NP in muons  
V-A vector operator significant!

1 Introduction

One of the most interesting phenomena reported by particle physics experiments in the last few
years are the numerous hints of Lepton Flavour Universality (LFU) violations observed in semi-
leptonic B decays. The very recent LHCb results on the LFU ratios Rµe

K(⇤) [1] and R⌧`

D(⇤) [2] are
the last two pieces of a seemingly coherent set of anomalies which involves di↵erent observables
and experiments. So far, not a single LFU ratio measurement exhibits a deviation with respect
to the Standard Model (SM) above the 3� level. However, the overall set of observables is very
consistent and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the
underlying quark-level transition:

• deviations from ⌧/µ (and ⌧/e) universality in b ! c`⌫̄ charged currents [2–5];

• deviations from µ/e universality in b ! s`` neutral currents [1, 6].

In both cases the combination of the results leads to an evidence around the 4� level for LFU
violating contributions of non-SM origin, whose size is O(10%) compared to the corresponding
charged- or neutral-current SM amplitudes. Furthermore, a strong evidence for a deviation from
the SM prediction has been observed by LHCb in the angular distribution of the B0

! K⇤0µ+µ�

decay [7,8], which is consistent with the deviations from LFU in neutral-current B decays [9,10].
These deviations from the SM have triggered a series of theoretical speculations about pos-

sible New Physics (NP) interpretations. Attempts to provide a combined/coherent explanation
for both charged- and neutral-current anomalies have been presented in Refs. [11–29]. A com-
mon origin of the two set of anomalies is not obvious, but is very appealing since: i) in both
types of semi-leptonic B-meson decays (charged and neutral) we are dealing with a violation of
LFU; ii) in both cases data favours left-handed e↵ective interactions that, due to the SM gauge
symmetry, naturally suggest a connection between charged and neutral currents.

One of the puzzling aspects of the present anomalies is that they have been observed only
in semi-leptonic B decays and are quite large compared to the corresponding SM amplitudes.
On the contrary, no evidence of deviation from the SM has been seen so far in the precise
(per-mil) tests of LFU in semi-leptonic K and ⇡ decays, purely leptonic ⌧ decays, and in the
electroweak precision observables. The most natural assumption to address this apparent para-
dox is the hypothesis that the NP responsible for the breaking of LFU is coupled mainly to
the third generation of quarks and leptons, with a small (but non-negligible) mixing with the
light generations [13, 25, 30]. This hypothesis also provides a natural first-order explanation for
the di↵erent size of the two e↵ects, which compete with a tree-level SM amplitude in charged
currents, and with a suppressed loop-induced SM amplitude in neutral currents, respectively.
Within this paradigm, a class of particularly motivated models includes those which are based
on a U(2)q⇥U(2)` flavour symmetry acting on the light generations of SM fermions [31,32], and
new massive bosonic mediators around the TeV scale: colour-less vector SU(2)L-triplets (W 0,
B0) [13], vector SU(2)L-singlet or -triplet leptoquarks (LQ) [17], or scalar SU(2)L-singlet and
-triplet leptoquarks. Besides providing a good description of low-energy data, these mediators
could find a consistent UV completion in the context of strongly-interacting theories with new
degrees of freedom at the TeV scale [23, 24].
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V-A triplet operator 
The most elegant solution!
*Not unique: Very few other options

4

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.

SM

!4 TeV"!2!Q3ΓΑQ3"!L2ΓΑL2"

!!30 TeV"!2!Q1ΓΑΣaQ1"!L2ΓΑΣaL2"

!4 TeV"!2!Q2ΓΑQ2"!L2ΓΑL2"

500 1000 1500 2000 2500 3000 3500 4000
0.7

0.8

0.9

1.0

1.1

1.2

1.3

m !% !! #GeV$

R
Μ%
Μ!
%e% e!

dΣ !pp" Μ$Μ%" # dΣ !pp" e$e%" , s0 & !13 TeV"2

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75
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For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80
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c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ

µel)83

+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
cdi j Lkl

"2
(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
q(ℓ)
Z101

is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
v (T 3

f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2

"2 cx .104

The only constraint on the contact terms imposed by SU (2)L105

invariance are ϵ
dL ek

R
i j = ϵ

u L ek
R

i j = cQi j ekk v
2/"2.106

Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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scalar or tensor currents, expected to be suppressed by the68
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µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ
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weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90
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The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108
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where τ ≡ m2
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s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118
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which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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If NP in muons  
V-A vector operator significant!

1 Introduction

One of the most interesting phenomena reported by particle physics experiments in the last few
years are the numerous hints of Lepton Flavour Universality (LFU) violations observed in semi-
leptonic B decays. The very recent LHCb results on the LFU ratios Rµe

K(⇤) [1] and R⌧`

D(⇤) [2] are
the last two pieces of a seemingly coherent set of anomalies which involves di↵erent observables
and experiments. So far, not a single LFU ratio measurement exhibits a deviation with respect
to the Standard Model (SM) above the 3� level. However, the overall set of observables is very
consistent and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the
underlying quark-level transition:

• deviations from ⌧/µ (and ⌧/e) universality in b ! c`⌫̄ charged currents [2–5];

• deviations from µ/e universality in b ! s`` neutral currents [1, 6].

In both cases the combination of the results leads to an evidence around the 4� level for LFU
violating contributions of non-SM origin, whose size is O(10%) compared to the corresponding
charged- or neutral-current SM amplitudes. Furthermore, a strong evidence for a deviation from
the SM prediction has been observed by LHCb in the angular distribution of the B0

! K⇤0µ+µ�

decay [7,8], which is consistent with the deviations from LFU in neutral-current B decays [9,10].
These deviations from the SM have triggered a series of theoretical speculations about pos-

sible New Physics (NP) interpretations. Attempts to provide a combined/coherent explanation
for both charged- and neutral-current anomalies have been presented in Refs. [11–29]. A com-
mon origin of the two set of anomalies is not obvious, but is very appealing since: i) in both
types of semi-leptonic B-meson decays (charged and neutral) we are dealing with a violation of
LFU; ii) in both cases data favours left-handed e↵ective interactions that, due to the SM gauge
symmetry, naturally suggest a connection between charged and neutral currents.

One of the puzzling aspects of the present anomalies is that they have been observed only
in semi-leptonic B decays and are quite large compared to the corresponding SM amplitudes.
On the contrary, no evidence of deviation from the SM has been seen so far in the precise
(per-mil) tests of LFU in semi-leptonic K and ⇡ decays, purely leptonic ⌧ decays, and in the
electroweak precision observables. The most natural assumption to address this apparent para-
dox is the hypothesis that the NP responsible for the breaking of LFU is coupled mainly to
the third generation of quarks and leptons, with a small (but non-negligible) mixing with the
light generations [13, 25, 30]. This hypothesis also provides a natural first-order explanation for
the di↵erent size of the two e↵ects, which compete with a tree-level SM amplitude in charged
currents, and with a suppressed loop-induced SM amplitude in neutral currents, respectively.
Within this paradigm, a class of particularly motivated models includes those which are based
on a U(2)q⇥U(2)` flavour symmetry acting on the light generations of SM fermions [31,32], and
new massive bosonic mediators around the TeV scale: colour-less vector SU(2)L-triplets (W 0,
B0) [13], vector SU(2)L-singlet or -triplet leptoquarks (LQ) [17], or scalar SU(2)L-singlet and
-triplet leptoquarks. Besides providing a good description of low-energy data, these mediators
could find a consistent UV completion in the context of strongly-interacting theories with new
degrees of freedom at the TeV scale [23, 24].
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at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.

SM
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Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl
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+
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(d̄iγµd j )(L̄kγ

µLl)84
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cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93

A(qi
p1

q̄
j
p2→ℓ−

p′
1
ℓ+

p′
2
)94

= i
∑

qL ,qR

∑

ℓL ,ℓR

(q̄iγ µq j ) (ℓ̄γµℓ) Fqℓ(p2), (2)95

where p ≡ p1 + p2 = p′
1 + p′

2, and the form factor Fqℓ(p2)96

can be expanded around the physical poles present in the SM97

(photon and Z boson propagators), leading to98

Fqℓ(p2) = δi j e2 Qq Qℓ

p2
+ δi j g

q
Z g ℓ

Z

p2 −m2
Z + im Z'Z

+
ϵ

qℓ
i j

v2
.99

(3)100

Here, Qq(ℓ) is the quark (lepton) electric charge and g
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is the corresponding coupling to Z boson: in the SM g
f
Z =102

2m Z
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f −Q f sin2 θW ). The contact terms ϵ
qℓ
i j are related to103

the EFT coefficients in Eq. (1) by simple relations ϵx = v2
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invariance are ϵ
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Fig. 1 Rµ+µ−/e+e− as a function of the dilepton invariant mass mℓ+ℓ−

for three new physics benchmark points. See text for details

The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108

dσ

dτ
=

(

dσ

dτ

)

SM

×
∑

q,ℓ Lqq̄(τ, µF )|Fqℓ(τ s0)|2
∑

q,ℓ Lqq̄(τ, µF )|FSM
qℓ (τ s0)|2

, (4) 109

where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118

Rµ+µ−/e+e−(mℓℓ) ≡
dσµµ

dmℓℓ
/

dσee

dmℓℓ
119

=
∑

q,µ Lqq̄(m2
ℓℓ/s0, µF )|Fqµ(m2

ℓℓ)|
2

∑

q,e Lqq̄(m2
ℓℓ/s0, µF )|Fqe(m

2
ℓℓ)|2

, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136

123
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scalar or tensor currents, expected to be suppressed by the68
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can contribute to q q̄ → ℓ+ℓ− either by modifying the70
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"2
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L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90
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The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108
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s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118
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, (5) 120

which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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If NP in muons  
V-A vector operator significant!

1 Introduction

One of the most interesting phenomena reported by particle physics experiments in the last few
years are the numerous hints of Lepton Flavour Universality (LFU) violations observed in semi-
leptonic B decays. The very recent LHCb results on the LFU ratios Rµe

K(⇤) [1] and R⌧`

D(⇤) [2] are
the last two pieces of a seemingly coherent set of anomalies which involves di↵erent observables
and experiments. So far, not a single LFU ratio measurement exhibits a deviation with respect
to the Standard Model (SM) above the 3� level. However, the overall set of observables is very
consistent and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the
underlying quark-level transition:

• deviations from ⌧/µ (and ⌧/e) universality in b ! c`⌫̄ charged currents [2–5];

• deviations from µ/e universality in b ! s`` neutral currents [1, 6].

In both cases the combination of the results leads to an evidence around the 4� level for LFU
violating contributions of non-SM origin, whose size is O(10%) compared to the corresponding
charged- or neutral-current SM amplitudes. Furthermore, a strong evidence for a deviation from
the SM prediction has been observed by LHCb in the angular distribution of the B0

! K⇤0µ+µ�

decay [7,8], which is consistent with the deviations from LFU in neutral-current B decays [9,10].
These deviations from the SM have triggered a series of theoretical speculations about pos-

sible New Physics (NP) interpretations. Attempts to provide a combined/coherent explanation
for both charged- and neutral-current anomalies have been presented in Refs. [11–29]. A com-
mon origin of the two set of anomalies is not obvious, but is very appealing since: i) in both
types of semi-leptonic B-meson decays (charged and neutral) we are dealing with a violation of
LFU; ii) in both cases data favours left-handed e↵ective interactions that, due to the SM gauge
symmetry, naturally suggest a connection between charged and neutral currents.

One of the puzzling aspects of the present anomalies is that they have been observed only
in semi-leptonic B decays and are quite large compared to the corresponding SM amplitudes.
On the contrary, no evidence of deviation from the SM has been seen so far in the precise
(per-mil) tests of LFU in semi-leptonic K and ⇡ decays, purely leptonic ⌧ decays, and in the
electroweak precision observables. The most natural assumption to address this apparent para-
dox is the hypothesis that the NP responsible for the breaking of LFU is coupled mainly to
the third generation of quarks and leptons, with a small (but non-negligible) mixing with the
light generations [13, 25, 30]. This hypothesis also provides a natural first-order explanation for
the di↵erent size of the two e↵ects, which compete with a tree-level SM amplitude in charged
currents, and with a suppressed loop-induced SM amplitude in neutral currents, respectively.
Within this paradigm, a class of particularly motivated models includes those which are based
on a U(2)q⇥U(2)` flavour symmetry acting on the light generations of SM fermions [31,32], and
new massive bosonic mediators around the TeV scale: colour-less vector SU(2)L-triplets (W 0,
B0) [13], vector SU(2)L-singlet or -triplet leptoquarks (LQ) [17], or scalar SU(2)L-singlet and
-triplet leptoquarks. Besides providing a good description of low-energy data, these mediators
could find a consistent UV completion in the context of strongly-interacting theories with new
degrees of freedom at the TeV scale [23, 24].
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V-A triplet operator 
The most elegant solution!
*Not unique: Very few other options

4

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.
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Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

Essentials of (most) models
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scalar or tensor currents, expected to be suppressed by the68

light fermion Yukawa couplings), dimension-six operators69

can contribute to q q̄ → ℓ+ℓ− either by modifying the70

SM contributions due to the Z exchange or via local four-71

fermion interactions. The former class of deviations can be72

probed with high precision by on-shell Z production and73

decays at both LEP-1 and LHC (see e.g. Ref. [13]). Also,74

such effects are not enhanced at high energies, scaling like75

∼v2/"2, where v ≃246 GeV.76

For these reasons we neglect them and focus on the four-77

fermion interactions which comprise four classes depend-78

ing on the chirality: (L̄ L)(L̄ L), (R̄ R)(R̄ R), (R̄ R)(L̄ L) and79

(L̄ L)(R̄ R). In particular, the relevant set of operators is80

LSMEFT ⊃
c
(3)
Qi j Lkl

"2
(Q̄iγµσ a Q j )(L̄kγ

µσaLl)81

+
c
(1)
Qi j Lkl

"2
(Q̄iγµQ j )(L̄kγ

µLl)82

+
cu i j ekl

"2
(ū iγµu j )(ēkγ

µel) +
cdi j Lkl

"2
(d̄iγµd j )(ēkγ
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+
cu i j Lkl

"2
(ū iγµu j )(L̄kγ

µLl) +
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(d̄iγµd j )(L̄kγ

µLl)84

+
cQi j ekl

"2
(Q̄iγµQ j )(ēkγ

µel) (1)85

where i, j, k, l are flavor indices, Qi = (V ∗
j i u

j
L , d i

L)T and86

Li = (νi
L , ℓi

L)T are the SM left-handed quark and lepton87

weak doublets and di , u i , ei are the right-handed singlets.88

V is the CKM flavor mixing matrix and σ a are the Pauli89

matrices acting on SU (2)L space.90

An equivalent classification of the possible contact inter-91

actions can be obtained by studying directly the q q̄ → ℓ−ℓ+
92

scattering amplitude:93
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The dilepton invariant mass spectrum can be written (see 107

Appendix A), 108
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where τ ≡ m2
ℓ+ℓ−/s0 and

√
s0 is the proton–proton center 110

of mass energy. The sum is over the left- and right-handed 111

quarks and leptons as well as the quark flavors accessible 112

in the proton. Note that, since we are interested in the high- 113

energy tails (away from the Z pole), the universal higher- 114

order radiative QCD corrections factorize to a large extent. 115

Therefore, consistently including those corrections in the SM 116

prediction is enough to achieve good theoretical accuracy. It 117

is still useful to define the differential LFU ratio, 118
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which is a both theoretically and experimentally cleaner 121

observable. In fact, in the SM both QCD and electroweak 122

corrections are universal among muons and electrons, pre- 123

dicting RSM
µ+µ−/e+e−(mℓℓ) ≃1 with very high accuracy. As 124

an illustration, in Fig. 1 we show the predictions for this 125

observable at
√

s0 = 13 TeV, assuming new physics in three 126

benchmark operators. The parton luminosities used to derive 127

these predictions are discussed in the next chapter. 128

A goal of this work is to connect the high-pT dilepton tails 129

measurements with the recent experimental hints on lepton- 130

flavor universality violation in rare semileptonic B meson 131

decays. The pattern of observed deviations can be explained 132

with a new physics contribution to a single four-fermion 133

bsµµ contact interaction. As discussed in more detail in 134

Sect. 3, a good fit of the flavor anomalies can be obtained 135

with a left-handed chirality structure. For this reason, when 136
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If NP in muons  
V-A vector operator significant!

1 Introduction

One of the most interesting phenomena reported by particle physics experiments in the last few
years are the numerous hints of Lepton Flavour Universality (LFU) violations observed in semi-
leptonic B decays. The very recent LHCb results on the LFU ratios Rµe

K(⇤) [1] and R⌧`

D(⇤) [2] are
the last two pieces of a seemingly coherent set of anomalies which involves di↵erent observables
and experiments. So far, not a single LFU ratio measurement exhibits a deviation with respect
to the Standard Model (SM) above the 3� level. However, the overall set of observables is very
consistent and, once combined, the probability of a mere statistical fluctuation is very low.

The evidences collected so far can naturally be grouped into two categories, according to the
underlying quark-level transition:

• deviations from ⌧/µ (and ⌧/e) universality in b ! c`⌫̄ charged currents [2–5];

• deviations from µ/e universality in b ! s`` neutral currents [1, 6].

In both cases the combination of the results leads to an evidence around the 4� level for LFU
violating contributions of non-SM origin, whose size is O(10%) compared to the corresponding
charged- or neutral-current SM amplitudes. Furthermore, a strong evidence for a deviation from
the SM prediction has been observed by LHCb in the angular distribution of the B0

! K⇤0µ+µ�

decay [7,8], which is consistent with the deviations from LFU in neutral-current B decays [9,10].
These deviations from the SM have triggered a series of theoretical speculations about pos-

sible New Physics (NP) interpretations. Attempts to provide a combined/coherent explanation
for both charged- and neutral-current anomalies have been presented in Refs. [11–29]. A com-
mon origin of the two set of anomalies is not obvious, but is very appealing since: i) in both
types of semi-leptonic B-meson decays (charged and neutral) we are dealing with a violation of
LFU; ii) in both cases data favours left-handed e↵ective interactions that, due to the SM gauge
symmetry, naturally suggest a connection between charged and neutral currents.

One of the puzzling aspects of the present anomalies is that they have been observed only
in semi-leptonic B decays and are quite large compared to the corresponding SM amplitudes.
On the contrary, no evidence of deviation from the SM has been seen so far in the precise
(per-mil) tests of LFU in semi-leptonic K and ⇡ decays, purely leptonic ⌧ decays, and in the
electroweak precision observables. The most natural assumption to address this apparent para-
dox is the hypothesis that the NP responsible for the breaking of LFU is coupled mainly to
the third generation of quarks and leptons, with a small (but non-negligible) mixing with the
light generations [13, 25, 30]. This hypothesis also provides a natural first-order explanation for
the di↵erent size of the two e↵ects, which compete with a tree-level SM amplitude in charged
currents, and with a suppressed loop-induced SM amplitude in neutral currents, respectively.
Within this paradigm, a class of particularly motivated models includes those which are based
on a U(2)q⇥U(2)` flavour symmetry acting on the light generations of SM fermions [31,32], and
new massive bosonic mediators around the TeV scale: colour-less vector SU(2)L-triplets (W 0,
B0) [13], vector SU(2)L-singlet or -triplet leptoquarks (LQ) [17], or scalar SU(2)L-singlet and
-triplet leptoquarks. Besides providing a good description of low-energy data, these mediators
could find a consistent UV completion in the context of strongly-interacting theories with new
degrees of freedom at the TeV scale [23, 24].
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The most elegant solution!  V-A connection observed in  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Fig. 5 Limits on the Z0 MFV model from pp ! µ+µ�. See text for
details.

3.2 Model examples

Let us briefly speculate about the UV scenarios capable of
explaining the observed pattern of deviations in the rare B
meson decays. For our EFT approach to be valid, we focus
on models with new resonances beyond the kinematical
reach for threshold production at the LHC. In such models,
the effective operators in Eq. (1) are presumably generated
at the tree level.3 We focus here on the single mediator
models in which the required effect is obtained by inte-
grating out a single resonance. These include either an ex-
tra Z0 bosons [28,32,37,38,39,40,41,42,43,44,45,46,47,
48,49] or a leptoquark [50,51,52,53,54,55,27,56,57,58]
(for a recent review on leptoquarks see [59]).

We note that a full set of single mediator models with
tree-level matching to the vector triplet (c(3)Qi jLkl

) or singlet

(c(1)Qi jLkl
) operators, consists of: color-singlet vectors Z0

µ ⇠
(1,1,0) and W 0

µ ⇠ (1,3,0), color-triplet scalar S3 ⇠ (3̄,3,1/3),
and vectors U µ

1 ⇠ (3,1,2/3), U µ
3 ⇠ (3,3,2/3), in the no-

tation of Ref. [59]. The quantum numbers in brackets indi-
cate color, weak, and hypercharge representations, respec-
tively.

Z0 and W 0 models: A color-singlet vector resonance
gives rise to an s-channel resonant contribution to the dilep-
ton invariant mass distributions if MZ0 is kinematically ac-
cessible. Otherwise, the deviation in the tails is described
well by the dimension-six operators in Eq. (1) with L =
MV and

c(3)Qi jLkl
=�g(3),i j

Q g(3),kl
L , c(1)Qi jLkl

=�g(1),i j
Q g(1),kl

L , (17)

3Note that including a loop suppression factor of ⇠ 1
16p2 , the fit of

the flavour anomalies in Eq. (10) points to a scale L ⇡ 2.6+0.2
�0.3 TeV

(see for example models proposed in Refs. [34,35,36]).

obtained after integrating out the heavy vectors with inter-
actions L � Z0

µ Jµ +W 0a
µ Ja

µ , where

Jµ = g(1),i j
Q (Q̄igµ Q j)+g(1),kl

L (L̄kgµ Ll) ,

Ja
µ = g(3),i j

Q (Q̄igµ saQ j)+g(3),kl
L (L̄kgµ saLl) .

(18)

A quark flavour-violating g(x),23
Q coupling and g(x),22

L are
required to explain the flavour anomalies, while the limits
from pp ! µ+µ� reported in Table 1, can easily be trans-
lated to the flavour-diagonal couplings and mass combina-
tions.

For example, assuming a singlet Z0 with g1,i j
Q = g1,i j

L =

d i jg⇤ and MFV structure (g(1),23
Q =Vtsg⇤) we derive limits

on g⇤ as a function of the mass MZ0 , both fitting the data
directly in the full model,4 and in the EFT approach. The
results are shown in Fig. 5. The limits in the full model are
shown with solid-blue while those in the EFT are shown
with dashed-blue. We see that for a mass MZ0 & 4�5 TeV
the limits in the two approaches agree well, while for the
lower masses the EFT still provides conservative bounds.5

On top of this, we show with green lines the best fit and 2s
interval which reproduce the b ! sµµ flavour anomalies,
showing how LHC dimuon searches already exclude such
a scenario independently of the Z0 mass. Red solid line
indicates the naive bound obtained when interpreting the
limits on the narrow-width resonance production s(pp !
Z0)⇥B(Z0 ! µ+µ�) from Fig. 6 of Ref. [11].

Related to the above analysis, let us comment on the
model recently proposed in Ref. [49]. An anomaly-free
horizontal gauge symmetry is introduced, with a correspond-
ing gauge field (Z0

h) having MFV-like couplings in the quark
sector. Fig. 1 of Ref. [49] shows the preferred region from
DCµ

9 in the mass versus coupling plane, as well as the con-
straint from the Z0 resonance search (from the same exper-
imental analysis used here [11]). While the limits from the
resonance search are effective up to ⇠ 4 TeV, we note that
the limits from the tails go even beyond and already probe
the interesting parameter region as shown in our Fig. 4.
Note that this statement is independent of the Z0 mass (as
long as the EFT is valid).

Leptoquark models: A color-triplet resonance in the
t-channel gives rise to pp ! `+`� at the LHC [60,61].
The relevant interaction Lagrangian for explaining B de-
cay anomalies is,

L � yLL
3i jQ̄

c,i
L is2saL j

LSa
3 + xLL

3i jQ̄
i
Lgµ saL j

LUa
3,µ

+ xLL
1i jQ̄

i
Lgµ L j

LU1,µ +h.c. ,
(19)

4The Z0 decay width is determined by decays into the SM fermions
u,d,s,c,b, t,µ,nµ via Eq. (18), i.e. GZ0/MZ0 = 5g2

⇤/(6p).
5See Ref. [9] for a more detailed discussion on the EFT validity in
high-pT dilepton tails.

Correct limit 
(from the tail)

6

predicted from U(2) symmetry, lbs ⇠Vts, with high lumi-
nosity an interesting region will be probed. For example,
in the U(2) flavour models of Ref. [29,33,34,57] a small
value of lbs is necessary in order to pass the bounds from
B� B̄ mixing.

3) Single-operator benchmarks:
It is illustrative to show the limits on l q

bs when only one
flavour-diagonal coefficient Cqµ is non-vanishing, while fit-
ting at the same time DCµ

9 in Eq. (10). The expected 2s
limits with 36.1 fb�1 (3000 fb�1) are:

l u
bs > 0.072 (0.77), l u

bs <�0.097 (�0.76) ,

l d
bs > 0.049 (0.36), l d

bs <�0.032 (�0.34) ,
l s

bs > 0.007 (0.04), l s
bs <�0.004 (�0.03) ,

l c
bs > 0.003 (0.02), l c

bs <�0.004 (�0.02) ,

l b
bs > 0.002 (0.01), l b

bs <�0.002 (�0.006) .

(16)
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results are shown in Fig. 5. The limits in the full model are
shown with solid-blue while those in the EFT are shown
with dashed-blue. We see that for a mass MZ0 & 4�5 TeV
the limits in the two approaches agree well, while for the
lower masses the EFT still provides conservative bounds.6

On top of this, we show with green lines the best fit and 2s
interval which reproduce the b ! sµµ flavour anomalies,
showing how LHC dimuon searches already exclude such
a scenario independently of the Z0 mass. The red solid line
indicates the naive bound obtained when interpreting the
limits on the narrow-width resonance production s(pp !
Z0)⇥B(Z0 ! µ+µ�) from Fig. 6 of Ref. [11].

Related to the above analysis, let us comment on the
model recently proposed in Ref. [52]. An anomaly-free
horizontal gauge symmetry is introduced, with a correspond-
ing gauge field (Z0

h) having MFV-like couplings in the quark

5The Z0 decay width is determined by decays into the SM fermions
u,d,s,c,b, t,µ,nµ via Eq. (18), i.e. GZ0/MZ0 = 5g2

⇤/(6p).
6See Ref. [9] for a more detailed discussion on the EFT validity in
high-pT dilepton tails.
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predicted from U(2) symmetry, lbs ⇠Vts, with high lumi-
nosity an interesting region will be probed. For example,
in the U(2) flavour models of Ref. [29,33,34,57] a small
value of lbs is necessary in order to pass the bounds from
B� B̄ mixing.

3) Single-operator benchmarks:
It is illustrative to show the limits on l q

bs when only one
flavour-diagonal coefficient Cqµ is non-vanishing, while fit-
ting at the same time DCµ

9 in Eq. (10). The expected 2s
limits with 36.1 fb�1 (3000 fb�1) are:

l u
bs > 0.072 (0.77), l u

bs <�0.097 (�0.76) ,

l d
bs > 0.049 (0.36), l d

bs <�0.032 (�0.34) ,
l s

bs > 0.007 (0.04), l s
bs <�0.004 (�0.03) ,

l c
bs > 0.003 (0.02), l c

bs <�0.004 (�0.02) ,

l b
bs > 0.002 (0.01), l b

bs <�0.002 (�0.006) .

(16)

3.2 Model examples

Let us briefly speculate about the UV scenarios capable of
explaining the observed pattern of deviations in the rare B
meson decays. For our EFT approach to be valid, we focus
on models with new resonances beyond the kinematical
reach for threshold production at the LHC. In such models,
the effective operators in Eq. (1) are presumably generated
at the tree level.4 We focus here on the single mediator
models in which the required effect is obtained by inte-
grating out a single resonance. These include either an ex-
tra Z0 bosons [29,33,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52] or a leptoquark [53,54,55,56,57,58,28,59,
60,61,62] (for a recent review on leptoquarks see [63]).

We note that a full set of single mediator models with
tree-level matching to the vector triplet (c(3)Qi jLkl

) or singlet

(c(1)Qi jLkl
) operators, consists of: color-singlet vectors Z0

µ ⇠
(1,1,0) and W 0

µ ⇠ (1,3,0), color-triplet scalar S3 ⇠ (3̄,3,1/3),
and vectors U µ

1 ⇠ (3,1,2/3), U µ
3 ⇠ (3,3,2/3), in the no-

tation of Ref. [63]. The quantum numbers in brackets indi-
cate color, weak, and hypercharge representations, respec-
tively.

Z0 and W 0 models: A color-singlet vector resonance
gives rise to an s-channel resonant contribution to the dilep-
ton invariant mass distributions if MZ0 is kinematically ac-
cessible. Otherwise, the deviation in the tails is described
well by the dimension-six operators in Eq. (1) with L =
MV and

c(3)Qi jLkl
=�g(3),i j

Q g(3),kl
L , c(1)Qi jLkl

=�g(1),i j
Q g(1),kl

L , (17)

4Note that including a loop suppression factor of ⇠ 1
16p2 , the fit of

the flavour anomalies in Eq. (10) points to a scale L ⇡ 2.6+0.2
�0.3 TeV

(see for example models proposed in Refs. [35,36,37]).

Fig. 5 Limits on the Z0 MFV model from pp ! µ+µ�. See text for
details.

obtained after integrating out the heavy vectors with inter-
actions L � Z0

µ Jµ +W 0a
µ Ja

µ , where

Jµ = g(1),i j
Q (Q̄igµ Q j)+g(1),kl

L (L̄kgµ Ll) ,

Ja
µ = g(3),i j

Q (Q̄igµ saQ j)+g(3),kl
L (L̄kgµ saLl) .

(18)

A quark flavour-violating g(x),23
Q coupling and g(x),22

L are
required to explain the flavour anomalies, while the limits
from pp ! µ+µ� reported in Table 1, can easily be trans-
lated to the flavour-diagonal couplings and mass combina-
tions.

For example, assuming a singlet Z0 with g1,i j
Q = g1,i j

L =

d i jg⇤ and MFV structure (g(1),23
Q =Vtsg⇤) we derive limits

on g⇤ as a function of the mass MZ0 , both fitting the data
directly in the full model,5 and in the EFT approach. The
results are shown in Fig. 5. The limits in the full model are
shown with solid-blue while those in the EFT are shown
with dashed-blue. We see that for a mass MZ0 & 4�5 TeV
the limits in the two approaches agree well, while for the
lower masses the EFT still provides conservative bounds.6

On top of this, we show with green lines the best fit and 2s
interval which reproduce the b ! sµµ flavour anomalies,
showing how LHC dimuon searches already exclude such
a scenario independently of the Z0 mass. The red solid line
indicates the naive bound obtained when interpreting the
limits on the narrow-width resonance production s(pp !
Z0)⇥B(Z0 ! µ+µ�) from Fig. 6 of Ref. [11].

Related to the above analysis, let us comment on the
model recently proposed in Ref. [52]. An anomaly-free
horizontal gauge symmetry is introduced, with a correspond-
ing gauge field (Z0

h) having MFV-like couplings in the quark

5The Z0 decay width is determined by decays into the SM fermions
u,d,s,c,b, t,µ,nµ via Eq. (18), i.e. GZ0/MZ0 = 5g2

⇤/(6p).
6See Ref. [9] for a more detailed discussion on the EFT validity in
high-pT dilepton tails.
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Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass (m``) after selection, for data
and the SM background estimates as well as their ratio before and after marginalisation. Selected Z0

� signals with a
pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in log(m``) and the shaded
band in the lower panels illustrates the total systematic uncertainty, as explained in Sec. 7. The data points are
shown together with their statistical uncertainty.

A search for Z0
� signals as well as generic Z0 signals with widths from 1% to 12% is performed utilising

the LLR test described in Ref. [54]. This second approach is specifically sensitive to narrow Z0-like
signals, and is thus complimentary to the more general BH approach. To perform the LLR search, the
Histfactory [55] package, together with RooStats [56] and RooFit [57] packages are used. The p-value
for finding a Z0

� signal excess (at a given pole mass), as well as variable width generic Z0 excess (at a
given central mass and with a given width), more significant than the observed, is computed analytically,
using the test statistic q0. The test statistic q0 is based on the logarithm of the profile likelihood ratio �(µ).
The test statistic is modified for signal masses below 1.5 TeV to also quantify the significance of potential
deficits in the data. As in the BH search the SM background model is constructed using the modes of
marginalised posteriors of the nuisance parameters from the MCMC, and these nuisance parameters are
not included in the likelihood at this stage. Starting with mZ 0 of 150 GeV, multiple mass hypotheses are
tested in pole mass steps corresponding to the histogram bin width to compute the local p-values — that
is p-values corresponding to specific signal mass hypotheses. Simulated experiments (for mZ 0 > 1.5 TeV)
and asymptotic relations (for mZ 0 < 1.5 TeV) in Ref. [54] are used to estimate the global p-value, which
is the probability to find anywhere in the m`` distribution a Z0-like excess more significant than that
observed in the data.

10 Results

The data, scrutinised with the statistical tests described in the previous section, show no significant ex-
cesses. The LLR tests for a Z0

� find global p-values of 58%, 91% and 83% in the dielectron, dimuon,
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predicted from U(2) symmetry, lbs ⇠Vts, with high lumi-
nosity an interesting region will be probed. For example,
in the U(2) flavour models of Ref. [29,33,34,57] a small
value of lbs is necessary in order to pass the bounds from
B� B̄ mixing.

3) Single-operator benchmarks:
It is illustrative to show the limits on l q

bs when only one
flavour-diagonal coefficient Cqµ is non-vanishing, while fit-
ting at the same time DCµ

9 in Eq. (10). The expected 2s
limits with 36.1 fb�1 (3000 fb�1) are:

l u
bs > 0.072 (0.77), l u

bs <�0.097 (�0.76) ,

l d
bs > 0.049 (0.36), l d

bs <�0.032 (�0.34) ,
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bs > 0.007 (0.04), l s
bs <�0.004 (�0.03) ,
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bs > 0.003 (0.02), l c

bs <�0.004 (�0.02) ,
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bs > 0.002 (0.01), l b

bs <�0.002 (�0.006) .

(16)

3.2 Model examples

Let us briefly speculate about the UV scenarios capable of
explaining the observed pattern of deviations in the rare B
meson decays. For our EFT approach to be valid, we focus
on models with new resonances beyond the kinematical
reach for threshold production at the LHC. In such models,
the effective operators in Eq. (1) are presumably generated
at the tree level.4 We focus here on the single mediator
models in which the required effect is obtained by inte-
grating out a single resonance. These include either an ex-
tra Z0 bosons [29,33,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52] or a leptoquark [53,54,55,56,57,58,28,59,
60,61,62] (for a recent review on leptoquarks see [63]).

We note that a full set of single mediator models with
tree-level matching to the vector triplet (c(3)Qi jLkl

) or singlet

(c(1)Qi jLkl
) operators, consists of: color-singlet vectors Z0

µ ⇠
(1,1,0) and W 0

µ ⇠ (1,3,0), color-triplet scalar S3 ⇠ (3̄,3,1/3),
and vectors U µ

1 ⇠ (3,1,2/3), U µ
3 ⇠ (3,3,2/3), in the no-

tation of Ref. [63]. The quantum numbers in brackets indi-
cate color, weak, and hypercharge representations, respec-
tively.

Z0 and W 0 models: A color-singlet vector resonance
gives rise to an s-channel resonant contribution to the dilep-
ton invariant mass distributions if MZ0 is kinematically ac-
cessible. Otherwise, the deviation in the tails is described
well by the dimension-six operators in Eq. (1) with L =
MV and

c(3)Qi jLkl
=�g(3),i j

Q g(3),kl
L , c(1)Qi jLkl

=�g(1),i j
Q g(1),kl

L , (17)

4Note that including a loop suppression factor of ⇠ 1
16p2 , the fit of

the flavour anomalies in Eq. (10) points to a scale L ⇡ 2.6+0.2
�0.3 TeV

(see for example models proposed in Refs. [35,36,37]).

Fig. 5 Limits on the Z0 MFV model from pp ! µ+µ�. See text for
details.

obtained after integrating out the heavy vectors with inter-
actions L � Z0

µ Jµ +W 0a
µ Ja

µ , where

Jµ = g(1),i j
Q (Q̄igµ Q j)+g(1),kl

L (L̄kgµ Ll) ,

Ja
µ = g(3),i j

Q (Q̄igµ saQ j)+g(3),kl
L (L̄kgµ saLl) .

(18)

A quark flavour-violating g(x),23
Q coupling and g(x),22

L are
required to explain the flavour anomalies, while the limits
from pp ! µ+µ� reported in Table 1, can easily be trans-
lated to the flavour-diagonal couplings and mass combina-
tions.

For example, assuming a Z0 with g(1),iiQ = g(1),iiL = g⇤
and MFV structure (g(1),23

Q = Vtsg⇤) we derive limits on
g⇤ as a function of the mass MZ0 , both fitting the data di-
rectly in the full model,5 and in the EFT approach. The
results are shown in Fig. 5. The limits in the full model are
shown with solid-blue while those in the EFT are shown
with dashed-blue. We see that for a mass MZ0 & 4�5 TeV
the limits in the two approaches agree well, while for the
lower masses the EFT still provides conservative bounds.6

On top of this, we show with green lines the best fit and 2s
interval which reproduce the b ! sµµ flavour anomalies,
showing how LHC dimuon searches already exclude such
a scenario independently of the Z0 mass. The red solid line
indicates the naive bound obtained when interpreting the
limits on the narrow-width resonance production s(pp !
Z0)⇥B(Z0 ! µ+µ�) from Fig. 6 of Ref. [11].

Related to the above analysis, let us comment on the
model recently proposed in Ref. [52]. An anomaly-free
horizontal gauge symmetry is introduced, with a correspond-
ing gauge field (Z0

h) having MFV-like couplings in the quark

5The Z0 decay width is determined by decays into the SM fermions
u,d,s,c,b, t,µ,nµ via Eq. (18), i.e. GZ0/MZ0 = 5g2

⇤/(6p).
6See Ref. [9] for a more detailed discussion on the EFT validity in
high-pT dilepton tails.

Figure 2: Left: Prediction for �Cµ
9 = ��Cµ

10 (following from Rµe
K(⇤)) and R⌧`

D(⇤) for a randomly
chosen set of points within the 1� preferred region of the EFT fit: the blue points are obtained setting
|�q

sb| < 5|Vcb|, while the green points are obtained setting the tighter condition |�q
sb| < 2|Vcb| in the fit.

The red cross denotes the 1� experimental constraint. Right: expectations for B(B ! K(⇤)⌫⌫̄) and
B(B ! K(⇤)⌧ ⌧̄) within the 1� preferred values of the EFT fit, again for �q

sb < 5Vcb (blue) and �q
sb < 2Vcb

(green).

the context of an explicit vector leptoquark model in Section 3.1. Another constraint on the
size of CS,T comes from the study of perturbative unitarity in 2 ! 2 scattering processes [45].
Similarly to the one from direct searches, this bound is relevant for small �q

bs
and large CS,T ,

while it is easily satisfied in the region chosen by our EFT fit.
As far as other low-energy observables are concerned, the most problematic constraint is

the one following from meson-antimeson mixing. On the one hand, given the symmetry and
symmetry-breaking structure of the theory, we expect the underlying model to generate an
e↵ective interaction of the type

�L(�B=2) = CNP
0

(V ⇤
tb
Vti)2

32⇡2v2
�
b̄L�µd

i

L

�2
, CNP

0 = O(1)⇥
32⇡2v2

⇤2
0

����
�q

sb

Vcb

����
2

. (6)

The preferred values of ⇤0 and �q

sb
from the EFT fit yield CNP

0 = O(100), while the experimental
constraints on�MBs,d require C

NP
0 to be at mostO(10%). This problem poses a serious challenge

to all models where�F = 2 e↵ective operators are generated without some additional dynamical
suppression compared to the semi-leptonic ones. A notable case where such suppression does
occur are models with LQ mediators, where �F = 2 amplitudes are generated only beyond the
tree level.

An alternative to avoid the problem posed by �F = 2 constraints is to abandon the large �q

sb

scenario preferred by the EFT fit, and assume |�q

sb
| . 0.1⇥ |Vcb|. In this limit the contribution to

(down-type)�F = 2 amplitudes is suppressed also in presence of tree-level amplitudes. However,
in order to cure the problem of the EFT fit, in this case one needs additional contributions to
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predicted from U(2) symmetry, lbs ⇠Vts, with high lumi-
nosity an interesting region will be probed. For example,
in the U(2) flavour models of Ref. [29,33,34,57] a small
value of lbs is necessary in order to pass the bounds from
B� B̄ mixing.

3) Single-operator benchmarks:
It is illustrative to show the limits on l q

bs when only one
flavour-diagonal coefficient Cqµ is non-vanishing, while fit-
ting at the same time DCµ

9 in Eq. (10). The expected 2s
limits with 36.1 fb�1 (3000 fb�1) are:

l u
bs > 0.072 (0.77), l u

bs <�0.097 (�0.76) ,

l d
bs > 0.049 (0.36), l d

bs <�0.032 (�0.34) ,
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bs > 0.007 (0.04), l s
bs <�0.004 (�0.03) ,
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3.2 Model examples

Let us briefly speculate about the UV scenarios capable of
explaining the observed pattern of deviations in the rare B
meson decays. For our EFT approach to be valid, we focus
on models with new resonances beyond the kinematical
reach for threshold production at the LHC. In such models,
the effective operators in Eq. (1) are presumably generated
at the tree level.4 We focus here on the single mediator
models in which the required effect is obtained by inte-
grating out a single resonance. These include either an ex-
tra Z0 bosons [29,33,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52] or a leptoquark [53,54,55,56,57,58,28,59,
60,61,62] (for a recent review on leptoquarks see [63]).

We note that a full set of single mediator models with
tree-level matching to the vector triplet (c(3)Qi jLkl

) or singlet

(c(1)Qi jLkl
) operators, consists of: color-singlet vectors Z0

µ ⇠
(1,1,0) and W 0

µ ⇠ (1,3,0), color-triplet scalar S3 ⇠ (3̄,3,1/3),
and vectors U µ

1 ⇠ (3,1,2/3), U µ
3 ⇠ (3,3,2/3), in the no-

tation of Ref. [63]. The quantum numbers in brackets indi-
cate color, weak, and hypercharge representations, respec-
tively.

Z0 and W 0 models: A color-singlet vector resonance
gives rise to an s-channel resonant contribution to the dilep-
ton invariant mass distributions if MZ0 is kinematically ac-
cessible. Otherwise, the deviation in the tails is described
well by the dimension-six operators in Eq. (1) with L =
MV and

c(3)Qi jLkl
=�g(3),i j

Q g(3),kl
L , c(1)Qi jLkl

=�g(1),i j
Q g(1),kl

L , (17)

4Note that including a loop suppression factor of ⇠ 1
16p2 , the fit of

the flavour anomalies in Eq. (10) points to a scale L ⇡ 2.6+0.2
�0.3 TeV

(see for example models proposed in Refs. [35,36,37]).

Fig. 5 Limits on the Z0 MFV model from pp ! µ+µ�. See text for
details.

obtained after integrating out the heavy vectors with inter-
actions L � Z0

µ Jµ +W 0a
µ Ja

µ , where

Jµ = g(1),i j
Q (Q̄igµ Q j)+g(1),kl

L (L̄kgµ Ll) ,

Ja
µ = g(3),i j

Q (Q̄igµ saQ j)+g(3),kl
L (L̄kgµ saLl) .

(18)

A quark flavour-violating g(x),23
Q coupling and g(x),22

L are
required to explain the flavour anomalies, while the limits
from pp ! µ+µ� reported in Table 1, can easily be trans-
lated to the flavour-diagonal couplings and mass combina-
tions.

For example, assuming a Z0 with g(1),iiQ = g(1),iiL = g⇤
and MFV structure (g(1),23

Q = Vtsg⇤) we derive limits on
g⇤ as a function of the mass MZ0 , both fitting the data di-
rectly in the full model,5 and in the EFT approach. The
results are shown in Fig. 5. The limits in the full model are
shown with solid-blue while those in the EFT are shown
with dashed-blue. We see that for a mass MZ0 & 4�5 TeV
the limits in the two approaches agree well, while for the
lower masses the EFT still provides conservative bounds.6

On top of this, we show with green lines the best fit and 2s
interval which reproduce the b ! sµµ flavour anomalies,
showing how LHC dimuon searches already exclude such
a scenario independently of the Z0 mass. The red solid line
indicates the naive bound obtained when interpreting the
limits on the narrow-width resonance production s(pp !
Z0)⇥B(Z0 ! µ+µ�) from Fig. 6 of Ref. [11].

Related to the above analysis, let us comment on the
model recently proposed in Ref. [52]. An anomaly-free
horizontal gauge symmetry is introduced, with a correspond-
ing gauge field (Z0

h) having MFV-like couplings in the quark

5The Z0 decay width is determined by decays into the SM fermions
u,d,s,c,b, t,µ,nµ via Eq. (18), i.e. GZ0/MZ0 = 5g2

⇤/(6p).
6See Ref. [9] for a more detailed discussion on the EFT validity in
high-pT dilepton tails.
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nosity an interesting region will be probed. For example,
in the U(2) flavour models of Ref. [29,33,34,57] a small
value of lbs is necessary in order to pass the bounds from
B� B̄ mixing.

3) Single-operator benchmarks:
It is illustrative to show the limits on l q

bs when only one
flavour-diagonal coefficient Cqµ is non-vanishing, while fit-
ting at the same time DCµ

9 in Eq. (10). The expected 2s
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Let us briefly speculate about the UV scenarios capable of
explaining the observed pattern of deviations in the rare B
meson decays. For our EFT approach to be valid, we focus
on models with new resonances beyond the kinematical
reach for threshold production at the LHC. In such models,
the effective operators in Eq. (1) are presumably generated
at the tree level.4 We focus here on the single mediator
models in which the required effect is obtained by inte-
grating out a single resonance. These include either an ex-
tra Z0 bosons [29,33,38,39,40,41,42,43,44,45,46,47,48,
49,50,51,52] or a leptoquark [53,54,55,56,57,58,28,59,
60,61,62] (for a recent review on leptoquarks see [63]).

We note that a full set of single mediator models with
tree-level matching to the vector triplet (c(3)Qi jLkl

) or singlet

(c(1)Qi jLkl
) operators, consists of: color-singlet vectors Z0

µ ⇠
(1,1,0) and W 0

µ ⇠ (1,3,0), color-triplet scalar S3 ⇠ (3̄,3,1/3),
and vectors U µ

1 ⇠ (3,1,2/3), U µ
3 ⇠ (3,3,2/3), in the no-

tation of Ref. [63]. The quantum numbers in brackets indi-
cate color, weak, and hypercharge representations, respec-
tively.

Z0 and W 0 models: A color-singlet vector resonance
gives rise to an s-channel resonant contribution to the dilep-
ton invariant mass distributions if MZ0 is kinematically ac-
cessible. Otherwise, the deviation in the tails is described
well by the dimension-six operators in Eq. (1) with L =
MV and

c(3)Qi jLkl
=�g(3),i j

Q g(3),kl
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4Note that including a loop suppression factor of ⇠ 1
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obtained after integrating out the heavy vectors with inter-
actions L � Z0

µ Jµ +W 0a
µ Ja

µ , where

Jµ = g(1),i j
Q (Q̄igµ Q j)+g(1),kl

L (L̄kgµ Ll) ,

Ja
µ = g(3),i j

Q (Q̄igµ saQ j)+g(3),kl
L (L̄kgµ saLl) .

(18)

A quark flavour-violating g(x),23
Q coupling and g(x),22

L are
required to explain the flavour anomalies, while the limits
from pp ! µ+µ� reported in Table 1, can easily be trans-
lated to the flavour-diagonal couplings and mass combina-
tions.

For example, assuming a Z0 with g(1),iiQ = g(1),iiL = g⇤
and MFV structure (g(1),23

Q = Vtsg⇤) we derive limits on
g⇤ as a function of the mass MZ0 , both fitting the data di-
rectly in the full model,5 and in the EFT approach. The
results are shown in Fig. 5. The limits in the full model are
shown with solid-blue while those in the EFT are shown
with dashed-blue. We see that for a mass MZ0 & 4�5 TeV
the limits in the two approaches agree well, while for the
lower masses the EFT still provides conservative bounds.6

On top of this, we show with green lines the best fit and 2s
interval which reproduce the b ! sµµ flavour anomalies,
showing how LHC dimuon searches already exclude such
a scenario independently of the Z0 mass. The red solid line
indicates the naive bound obtained when interpreting the
limits on the narrow-width resonance production s(pp !
Z0)⇥B(Z0 ! µ+µ�) from Fig. 6 of Ref. [11].

Related to the above analysis, let us comment on the
model recently proposed in Ref. [52]. An anomaly-free
horizontal gauge symmetry is introduced, with a correspond-
ing gauge field (Z0

h) having MFV-like couplings in the quark

5The Z0 decay width is determined by decays into the SM fermions
u,d,s,c,b, t,µ,nµ via Eq. (18), i.e. GZ0/MZ0 = 5g2

⇤/(6p).
6See Ref. [9] for a more detailed discussion on the EFT validity in
high-pT dilepton tails.

Z’ model

MFV in the quark sector

R(K(*)) and high pT

https://indico.cern.ch/event/667965/contributions/2787576/attachments/1583613/2503027/greljo-2018-ZPW.pdf
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LHC crisis: strong bounds and no new discovery where it was anticipated

~~ B2G can open new horizons ~~
no lack of theoretical motivations

& plenty of physics issues outside the SM frame

from deep QFT questions ~~ to pressing phenomenological puzzles

* don’t listen too much to theorists: there are 10500 vacua so the theory predictions always 
come with great prejudice that vary with time.


