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HEP: Landscape and Frontiers

FNAL Intensity Frontier

>50M Lines of code that exist in multiple 
experiments and packages; persistence 

across generations of experiments



High Luminosity LHC
● Large rise in rate (~10kHz) and 

complexity (mu~200) : Run 2 SW & 
computing will not scale
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● Resources needed would hugely 
exceed those from technology 
evolution alone alone with a flat 
budget (close to Run 2+3 evolution)

CMS Disk Needs 
(Run 2 model)

ATLAS CPU Needs 
(Run 2 model)

Analysis Data



Shifting landscape for 
end-to-end computing
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The Good Old Days

The Brave 
New World

Graeme Stewart, CERN



Software Challenges for HL-LHC
● Pile-up of ~200 ⇒ particularly a challenge for 

charged particle reconstruction (superlinear scaling, ~x30-50) 
● With a flat budget, improvements from hardware of ~x6

(Moore’s Law) are the real maximum we can expect
● Increased amount of data requires us to revise/evolve our computing and data 

management approaches
○ We must be able to feed our applications with data efficiently at scale (end-to-end computing)
○ For analysis sheer volume of event data is a major factor - I/O bound workload

● HEP software typically executes 1 instruction at a time (per thread)
○ Major re-engineering required to benefit from modern CPUs (can do 8 in theory, more like 2-4 for ‘real’ 

code)
○ Accelerators like GPUs are even more challenging

● HL-LHC salvation will come from software improvements, not from hardware
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● HSF established in 2015 to facilitate coordination and 
common efforts in software and computing across HEP 
in general

● Charged by WLCG to address R&D for the next decade
● 70 page document on arXiv (1712.06982)
● 13 topical sections summarising R&D in a variety of 

technical areas for HEP Software and Computing
○ Backed by topical papers with more details also 

(e.g. 50-page detailed review about Detector 
Simulation)

● 1 section on Training and Careers
● 310 authors (signers) from 124 HEP-related institutions
● Feature article in CERN Courier
● More details on the HSF web site
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HEP Software Foundation Roadmap for Software 
and Computing R&D in the 2020s

https://hepsoftwarefoundation.org/
https://arxiv.org/abs/1712.06982
https://iopp.fileburst.com/ccr/archive/CERNCourier2018Apr-digitaledition.pdf
https://hepsoftwarefoundation.org/organization/cwp.html


Guiding Strategy for the Future

● HEP faced many challenges before other communities and has 
developed over the decades a lot of community-specific solutions

○ Mainly for good reasons!
○ Several HEP-tools adopted by some other communities, e.g. GEANT4 and ROOT, and WLCG itself is a 

model/driver for large-scale computing adopted by some other disciplines

● But the world changed: other scientific communities and industry facing some 
similar challenges and HEP must be able to benefit from them

● Does not mean that we have drop-in replacements for our solutions
○ Challenge: find the proper integration between our community tools and the available technologies 

outside, maintain the necessary backward compatibility/continuity and long-term sustainability
○ This means we need HEP domain experts who are also well versed in new techniques

● We face an end-to-end optimisation problem and we need to tackle issues from 
event generation right through to final histograms
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Simulating Physics and Detectors

● Physics event generation starts our 
simulation chain

○ At Next-to-Leading Order (NLO) precision 
used today,  CPU consumption can become 
significant

○ Study of rare processes at the HL-LHC will 
require the more demanding NNLO for more 
analyses

● Generators are written by the theory 
community

○ Need expert help to achieve code 
optimisation

○ Even basic multi-thread safety is problematic 
for many older, but still heavily used, 
generators
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● Simulating our detectors consumes 
huge resources

● Improved physics models for higher 
precision at higher energies

● Adapting to new computing architectures
○ Vectorised transport engine tested in a 

realistic prototype - GeantV early releases
○ Evolution and re-integration into Geant4

● Faster simulation - develop a common 
toolkit for tuning and validation of fast 
simulation

○ How can we best use Machine Learning 
profitably here? 

○ Multi-level approach, from processes to 
entire events

Machine learning 
simulated calorimiter

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj_0JjNtbnZAhWMvhQKHeOhBloQFggtMAE&url=https%3A%2F%2Farxiv.org%2Fabs%2F1202.1251&usg=AOvVaw2TJTKSjBy2_aPn3k7DJNh5


Software Triggers and Real Time Analysis

● Physics programs for LHCb and ALICE become very signal rich in Run 3
● Classic binary triggers cut too much into physics when many events are interesting
● Use a full software trigger to be able to extract analysis quality outputs from collisions

○ 30MHz pp collisions for LHCb
○ 50kHz HI collisions for ALICE

● Challenge is to keep data volumes under control
○ The only way is to drop the RAW data and keep only the reconstructed outputs
○ This is a paradigm shift to ‘lossy’ compression of events
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LHCb Turbo Stream

● If RAW is not to be saved long term, reconstruction 
needs to be final analysis quality from HLT

● ‘Real time’ alignment and calibration done in ~hours
● HLT 2 does a high quality properly calibrated 

reconstruction
○ Reduced turbo format stored long term (flexible content)
○ RAW data deleted

● Run 2 turbo is 25% of trigger, but only 10% of 
bandwidth

● Run 3 will extend this, with no hardware trigger and 
HLT 1 running at full rate
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Refs: 1, 2

http://iopscience.iop.org/article/10.1088/1742-6596/664/8/082004
https://cds.cern.ch/record/2630473


ALICE in Run 3 

● Data reduction scheme very 
similar in spirit to LHCb

● Innovative message passing
framework

● Big data chunks based on timeframes of ~1000 bunch crossings
● Pioneered the use of analysis trains

○ Train model is to read analysis inputs only once (the locomotive)
○ But to run many groups’ analysis code on the data (the carriages)
○ Amortises the costs of reading large input data sets

● Current problem is that the grid is not very well setup for I/O heavy analysis 
tasks - generic compute clusters doing simulation and reconstruction as well
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Ref: 1

https://indico.cern.ch/event/587955/contributions/2938144/attachments/1675256/2705832/2018-7-chep-framework.pdf


Analysis Clusters

● Dedicated clusters can provide the I/O needed for analysis
● Better compression algorithms and parallelisation
● Improve greatly the data model to ease loading the data into memory

○ Flat data structures, cross references with offsets, no scattered memory
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Ref: 1

https://indico.cern.ch/event/587955/contributions/2938144/attachments/1675256/2705832/2018-7-chep-framework.pdf


Aside: Data Layout

● Modern CPUs run much faster than 
memory

● Memory cache misses are hugely 
expensive

○ Many times more loss than gains from, e.g., 
vectorisation

● Critical to layout data in a friendly way 
for the CPU

○ Vectorisation friendly
○ Prerequisite to using GPUs

● But present an interface to physicists 
that looks more natural

○ ATLAS xAOD, LHCb SOAContainer
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Analysis Data Reduction

● CMS full AOD weighs in at 450kB/evt (on disk)
○ But how much is really needed for analysis?
○ 95% of Run 2 analysis on MiniAOD, 45kB/evt

● Up front decisions made as to what analysis will 
need

○ This cannot work unless the detector is well understood 
and the reconstruction robust

● nanoAOD aims to cover 50% with a format that is 
O(1kB/evt)

○ No tracks or individual particle candidates
○ No detector details
○ Precomputed object IDs
○ No systematics (compute as needed)
○ Reduced precision (not even 32bit floats)

● Caveat Emptor: Not yet physics validated
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Ref: 1

https://indico.cern.ch/event/587955/contributions/2937531/attachments/1683536/2706024/rizzi-nanoaod-CHEP.pdf


Next Generation Analysis Clusters

● Even with improvements to input data size and formats the 
process of skimming analysis data is heavy and quite slow

● Industry does not analyse their data like HEP 
○ Traditionally used SQL databases
○ Now facilities like Apache Spark clusters or Google BigQuery are now 

common
○ Underlying structure is not based on files or filesystems now, but 

“objects”

● Allows data to be addressed more directly at column level
○ Filtering, computing derived data from selections supported
○ Workload is usually split our onto many processing nodes all looking at 

the same object store
○ Database-like (but of the NoSQL variety)
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For HEP data?
● ...but HEP data isn’t flat

○ events naturally have different content and is analysed in 
sophisticated ways

● For this reason HEP invented its own columnar data 
format

○ It’s a ROOT TTree - we know this is highly efficient and works 
very well for our data

● Other options
○ Use HDF5 (Hierarchical Data Format)

■ Doesn’t perform as well for our data
○ Flatten data in novel ways, spread on event across multiple 

rows (such as the AwkwardArray library)

● A lot of R&D in this area (FNAL Spark Cluster), but 
potential benefits would be large
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HEP data does 
not map so 
well into flat 
tables

https://indico.cern.ch/event/567550/contributions/2628878/
https://indico.cern.ch/event/567550/contributions/2628878/
https://indico.cern.ch/event/587955/contributions/2937525/attachments/1678398/2695563/pivarski-chep-columnardata.pdf
http://lss.fnal.gov/archive/2017/pub/fermilab-pub-17-078-cd.pdf


Declarative Analysis

● Notable trend from industry is that 
there is no event loop

● User describes what they want to do, 
not how to do it

○ This is actually a big advantage - at the 
moment analysts need to learn too much 
boilerplate to run jobs

○ Strive for a simple programming model, 
easy to use

● Backend system then free to optimise
○ Scaling to 100 threads demonstrated
○ Future proofed for future hardware
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ROOT::EnableImplicitMT();
ROOT::RDataFrame df(dataset);
auto df2 = df.Filter("x > 0")

   .Define("r2", "x*x + y*y");
auto rHist = df2.Histo1D("r2");
df2.Snapshot("newtree", "out.root");

Ref 1, 2

Scales up to real 
ATLAS analysis

This is for ROOT, 
but also pure 
python examples

https://indico.cern.ch/event/587955/contributions/2937534/attachments/1683046/2704767/RDataframe__CHEP.pdf
https://indico.cern.ch/event/587955/contributions/2937579/attachments/1681008/2707182/BKrikler_CHEP_FAST-BinnedDataframes_16to9.pdf


Juypter Notebooks

● Web based technology for running 
interactive scripts

● Better for training and reproducibility 
(also reinterpretation)

● Can be used as a portal to large scale 
resources

○ E.g., Using CERN SWAN service to send jobs to 
an Apache Spark cluster

● Can allow ‘interactive’ parts of analysis to 
scale up significantly over laptop or 
workstation resource

○ But has to offer the same user experience
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https://swan.cern.ch/

https://swan.cern.ch/


Machine Learning

● Probably the hottest topic in IT these days
○ AlphaGo, Self Driving Cars, Language Processing, … 

● Deep Neural Networks are enormous 
non-linear functions, with huge numbers of 
free parameters

○ Breakthrough is in being able to efficiently train these 
networks to give a useful response

● Toolkits to are generally very friendly to 
modern hardware
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Driving image 
classification

Chihuahua or blueberry muffin?



Machine Learning in HEP

● Techniques clearly work for our field
○ Classifiers improving analysis today (~+50% discovery 

power)
○ Can reconstruct physics objects even ‘unsupervised’
○ Generative models very interesting for simulation

■ Even simulation straight to analysis output

● Moving beyond ‘naive’ applications to folding 
in physics knowledge as field matures

○ Needs HEP experts in ML

● Training the network is the significant part of 
the computing burden

○ Inference is usually fast
■ But can run on accelerated devices, like FPGAs

○ HEP software has to incorporate many networks - 
memory consumption is a problem
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                    significance with 
different NN setups and with/out 
‘high-level’ variables (1410.3469)

Adding 
physics 
knowledge to 
ML W-jet 
reconstruction 
improves 
results 
(1609.00607)

https://indico.cern.ch/event/587955/contributions/2937529/attachments/1683932/2706842/HLS4ML_CHEP2018_Ngadiuba.pdf
https://arxiv.org/abs/1410.3469
https://arxiv.org/abs/1609.00607


Accelerated Computing
● GPUs superb at delivering floating point operations

○ Often x10-20 higher than CPUs
○ But difficult to program against in many cases

■ Don’t deal well with branchy code
○ GPGPU cards not cheap, not easy to measure efficiency of use

● Excel at training deep learning neural networks
● Data ingestion can be limiting factor for other uses

○ Particularly when few calculations need done on the data
○ E.g., cuts, filters, derived variables

● However, there are some cases where they can help 
analysis a lot

○ Goofit and Hydra minimiser, very much applicable to analysis 
with large numbers of toy models
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X230 speed-up

Phase space generator 
speed-up with Hydra

€€€€!

https://goofit.github.io/
https://github.com/MultithreadCorner/Hydra


Conclusions

● Major challenges for software and computing come in the future
○ Run 3 is almost upon us for ALICE and LHCb, HL-LHC for ATLAS and CMS

● Analysis requires software tooling that will deal with a huge increase in events, 
driven by physics

● How to succeed:
○ Reduce to the data you really need
○ Optimal layout for fast ingestion and processing
○ Declarative syntax for clarity, reproducibility and optimisation (concurrency and parallelisation)

■ Make the backend smart
○ Suitable infrastructure

■ Are dedicated facilities the future here? 
○ Take advantage of industry advances, adapted to our problems

■ Modern CPUs and GPUs are everyone’s concern here, Machine Learning is a game changer
○ Cooperation and recognition matter a lot
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