Future opportunities and challenges for software in HEP
(with an analysis slant)

Graeme Stewart, CERN EP-SFT

ECFA 102nd Plenary Meeting, ALBA Synchrotron, 20 July 2018
>50M Lines of code that exist in multiple experiments and packages; persistence across generations of experiments
High Luminosity LHC

- Large rise in rate (~10kHz) and complexity (μ~200): Run 2 SW & computing will not scale

Resources needed would hugely exceed those from technology evolution alone with a flat budget (close to Run 2+3 evolution)
Shifting landscape for end-to-end computing

The Good Old Days

The Brave New World

Graeme Stewart, CERN
Software Challenges for HL-LHC

- Pile-up of ~200 ⇒ particularly a challenge for charged particle reconstruction (superlinear scaling, ~x30-50)
- With a flat budget, improvements from hardware of ~x6 (Moore’s Law) are the real maximum we can expect
- Increased amount of data requires us to revise/evolve our computing and data management approaches
 - We must be able to feed our applications with data efficiently at scale (end-to-end computing)
 - For analysis, sheer volume of event data is a major factor - I/O bound workload
- HEP software typically executes 1 instruction at a time (per thread)
 - Major re-engineering required to benefit from modern CPUs (can do 8 in theory, more like 2-4 for ‘real’ code)
 - Accelerators like GPUs are even more challenging
- HL-LHC salvation will come from software improvements, not from hardware
HEP Software Foundation Roadmap for Software and Computing R&D in the 2020s

- HSF established in 2015 to facilitate *coordination* and *common efforts* in software and computing across HEP in general
- Charged by WLCG to address R&D for the next decade
- 70 page document on arXiv ([1712.06982](https://arxiv.org/abs/1712.06982))
- **13 topical sections** summarising R&D in a variety of technical areas for HEP Software and Computing
 - Backed by topical papers with more details also (e.g. 50-page detailed review about Detector Simulation)
- 1 section on Training and Careers
- **310 authors** (signers) from 124 HEP-related institutions
- Feature article in *CERN Courier*
- More details on the HSF [web site](http://www.hepsoftwarefoundation.org)

Contents

1. Introduction
2. Software and Computing Challenges
3. Programme of Work
 - 3.1 Physics Generators
 - 3.2 Detector Simulation
 - 3.3 Software Trigger and Event Reconstruction
 - 3.4 Data Analysis and Interpretation
 - 3.5 Machine Learning
 - 3.6 Data Organisation, Management and Access
 - 3.7 Facilities and Distributed Computing
 - 3.8 Data-Flow Processing Framework
 - 3.9 Conditions Data
 - 3.10 Visualisation
 - 3.11 Software Development, Deployment, Validation and Verification
 - 3.12 Data and Software Preservation
 - 3.13 Security
4. Training and Careers
 - 4.1 Training Challenges
 - 4.2 Possible Directions for Training
 - 4.3 Career Support and Recognition
5. Conclusions

Appendix A List of Workshops
Appendix B Glossary
References
Guiding Strategy for the Future

- HEP faced many challenges before other communities and has developed over the decades a lot of community-specific solutions
 - Mainly for good reasons!
 - Several HEP-tools adopted by some other communities, e.g. GEANT4 and ROOT, and WLCG itself is a model/driver for large-scale computing adopted by some other disciplines
- But the world changed: other scientific communities and industry facing some similar challenges and HEP must be able to benefit from them
- Does not mean that we have drop-in replacements for our solutions
 - Challenge: find the proper integration between our community tools and the available technologies outside, maintain the necessary backward compatibility/continuity and long-term sustainability
 - This means we need HEP domain experts who are also well versed in new techniques
- We face an end-to-end optimisation problem and we need to tackle issues from event generation right through to final histograms
Simulating Physics and Detectors

- Physics event generation starts our simulation chain
 - At Next-to-Leading Order (NLO) precision used today, CPU consumption can become significant
 - Study of rare processes at the HL-LHC will require the more demanding NNLO for more analyses

- Generators are written by the theory community
 - Need expert help to achieve code optimisation
 - Even basic multi-thread safety is problematic for many older, but still heavily used, generators

- Simulating our detectors consumes huge resources

- Improved physics models for higher precision at higher energies

- Adapting to new computing architectures
 - Vectorised transport engine tested in a realistic prototype - GeantV early releases
 - Evolution and re-integration into Geant4

- Faster simulation - develop a common toolkit for tuning and validation of fast simulation
 - How can we best use Machine Learning profitably here?
 - Multi-level approach, from processes to entire events
Software Triggers and Real Time Analysis

- Physics programs for LHCb and ALICE become very signal rich in Run 3
- Classic binary triggers cut too much into physics when many events are interesting
- Use a full software trigger to be able to extract analysis quality outputs from collisions
 - 30MHz pp collisions for LHCb
 - 50kHz HI collisions for ALICE
- Challenge is to keep data volumes under control
 - The only way is to drop the RAW data and keep only the reconstructed outputs
 - This is a paradigm shift to ‘lossy’ compression of events
LHCb Turbo Stream

- If RAW is not to be saved long term, reconstruction needs to be final analysis quality from HLT
- ‘Real time’ alignment and calibration done in ~hours
- HLT 2 does a high quality properly calibrated reconstruction
 - Reduced turbo format stored long term (flexible content)
 - RAW data deleted
- Run 2 turbo is 25% of trigger, but only 10% of bandwidth
- Run 3 will extend this, with no hardware trigger and HLT 1 running at full rate

Refs: 1, 2
ALICE in Run 3

- Data reduction scheme very similar in spirit to LHCb
- Innovative message passing framework
- Big data chunks based on timeframes of ~1000 bunch crossings
- Pioneered the use of analysis trains
 - Train model is to read analysis inputs only once (the locomotive)
 - But to run many groups’ analysis code on the data (the carriages)
 - Amortises the costs of reading large input data sets
- Current problem is that the grid is not very well setup for I/O heavy analysis tasks - generic compute clusters doing simulation and reconstruction as well

Ref: 1
Analysis Clusters

- Dedicated clusters can provide the I/O needed for analysis
- Better compression algorithms and parallelisation
- Improve greatly the data model to ease loading the data into memory
 - Flat data structures, cross references with offsets, no scattered memory
Aside: Data Layout

- Modern CPUs run much faster than memory
- Memory cache misses are hugely expensive
 - Many times more loss than gains from, e.g., vectorisation
- Critical to layout data in a friendly way for the CPU
 - Vectorisation friendly
 - Prerequisite to using GPUs
- But present an interface to physicists that looks more natural
 - ATLAS xAOD, LHCb SOAContainer
Analysis Data Reduction

- CMS full AOD weighs in at 450kB/evt (on disk)
 - But how much is really needed for analysis?
 - 95% of Run 2 analysis on MiniAOD, 45kB/evt
- Up front decisions made as to what analysis will need
 - This cannot work unless the detector is well understood and the reconstruction robust
- nanoAOD aims to cover 50% with a format that is \(O(1kB/evt) \)
 - No tracks or individual particle candidates
 - No detector details
 - Precomputed object IDs
 - No systematics (compute as needed)
 - Reduced precision (not even 32bit floats)
- Caveat Emptor: Not yet physics validated
Next Generation Analysis Clusters

- Even with improvements to input data size and formats the process of skimming analysis data is heavy and quite slow

- Industry does not analyse their data like HEP
 - Traditionally used SQL databases
 - Now facilities like Apache Spark clusters or Google BigQuery are now common
 - Underlying structure is not based on files or filesystems now, but “objects”

- Allows data to be addressed more directly at column level
 - Filtering, computing derived data from selections supported
 - Workload is usually split our onto many processing nodes all looking at the same object store
 - Database-like (but of the NoSQL variety)
For HEP data?

- ...but HEP data isn’t flat
 - events naturally have different content and is analysed in sophisticated ways
- For this reason HEP invented its own columnar data format
 - It’s a ROOT TTree - we know this is highly efficient and works very well for our data
- Other options
 - Use HDF5 (Hierarchical Data Format)
 - Doesn’t perform as well for our data
 - Flatten data in novel ways, spread on event across multiple rows (such as the AwkwardArray library)
- A lot of R&D in this area (FNAL Spark Cluster), but potential benefits would be large
Declarative Analysis

- Notable trend from industry is that there is *no event loop*
- User describes *what* they want to do, *not how* to do it
 - This is actually a big advantage - at the moment analysts need to learn too much boilerplate to run jobs
 - Strive for a *simple programming model*, easy to use
- Backend system then free to optimise
 - Scaling to 100 threads demonstrated
 - Future proofed for *future hardware*

```cpp
ROOT::EnableImplicitMT();
ROOT::RDataFrame df(dataset);
auto df2 = df.Filter("x > 0")
  .Define("r2", "x*x + y*y");
auto rHist = df2.Histo1D("r2");
df2.Snapshot("newtree", "out.root");
```
Jupyter Notebooks

- Web based technology for running interactive scripts
- Better for training and reproducibility (also reinterpretation)
- Can be used as a portal to large scale resources
 - E.g., Using CERN SWAN service to send jobs to an Apache Spark cluster
- Can allow ‘interactive’ parts of analysis to scale up significantly over laptop or workstation resource
 - But has to offer the same user experience

https://swan.cern.ch/
Machine Learning

- Probably the hottest topic in IT these days
 - AlphaGo, Self Driving Cars, Language Processing, ...
- Deep Neural Networks are enormous non-linear functions, with huge numbers of free parameters
 - Breakthrough is in being able to *efficiently train* these networks to give a useful response
- Toolkits to are generally *very friendly to modern hardware*
Machine Learning in HEP

- Techniques clearly work for our field
 - Classifiers improving analysis today (≈+50% discovery power)
 - Can reconstruct physics objects even ‘unsupervised’
 - Generative models very interesting for simulation
 - Even simulation straight to analysis output
- Moving beyond ‘naive’ applications to folding in physics knowledge as field matures
 - Needs HEP experts in ML
- Training the network is the significant part of the computing burden
 - Inference is usually fast
 - But can run on accelerated devices, like FPGAs
 - HEP software has to incorporate many networks - memory consumption is a problem

\[
H \rightarrow \tau^+\tau^- \text{ significance with different NN setups and with/out ‘high-level’ variables (1410.3469)}
\]

Adding physics knowledge to ML W-jet reconstruction improves results (1609.00607)
Accelerated Computing

- GPUs superb at delivering floating point operations
 - Often x10-20 higher than CPUs
 - But difficult to program against in many cases
 - Don’t deal well with branchy code
 - GPGPU cards not cheap, not easy to measure efficiency of use
- Excel at training deep learning neural networks
- Data ingestion can be limiting factor for other uses
 - Particularly when few calculations need done on the data
 - E.g., cuts, filters, derived variables
- However, there are some cases where they can help analysis a lot
 - Goofit and Hydra minimiser, very much applicable to analysis with large numbers of toy models
Conclusions

● Major challenges for software and computing come in the future
 ○ Run 3 is almost upon us for ALICE and LHCb, HL-LHC for ATLAS and CMS
● Analysis requires software tooling that will deal with a huge increase in events, driven by physics
● How to succeed:
 ○ Reduce to the data you really need
 ○ Optimal layout for fast ingestion and processing
 ○ Declarative syntax for clarity, reproducibility and optimisation (concurrency and parallelisation)
 ■ Make the backend smart
 ○ Suitable infrastructure
 ■ Are dedicated facilities the future here?
 ○ Take advantage of industry advances, adapted to our problems
 ■ Modern CPUs and GPUs are everyone’s concern here, Machine Learning is a game changer
 ○ Cooperation and recognition matter a lot
References

- RDataFrame: https://indico.cern.ch/event/587955/contributions/2937534/attachments/1683046/2704767/RDataframe__CHEP.pdf
Acknowledgements

Many thanks to:

Jakob Blomer, Tommaso Boccali, Pere Mato, Axel Naumann, Elizabeth Sexton-Kennedy, Andrea Valassi

And to the whole community for their excellent work in HEP Software and Computing