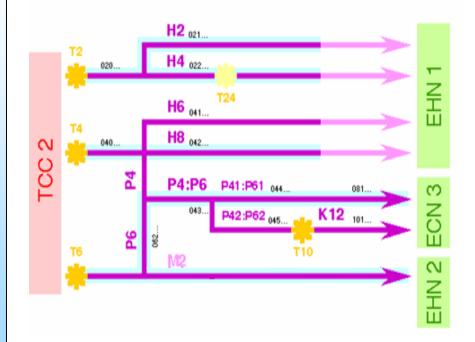
SPS NORTH and PS EAST AREAS POWER CONVERTERS

Situation of the power converters of the SPS and PS experimental areas

Y.Gaillard AB/PO

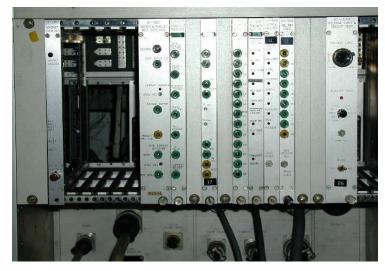
SPS NORTH and PS EAST AREAS POWER CONVERTERS

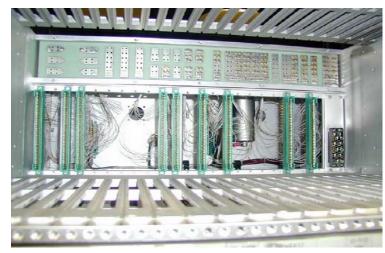
CONTENTS

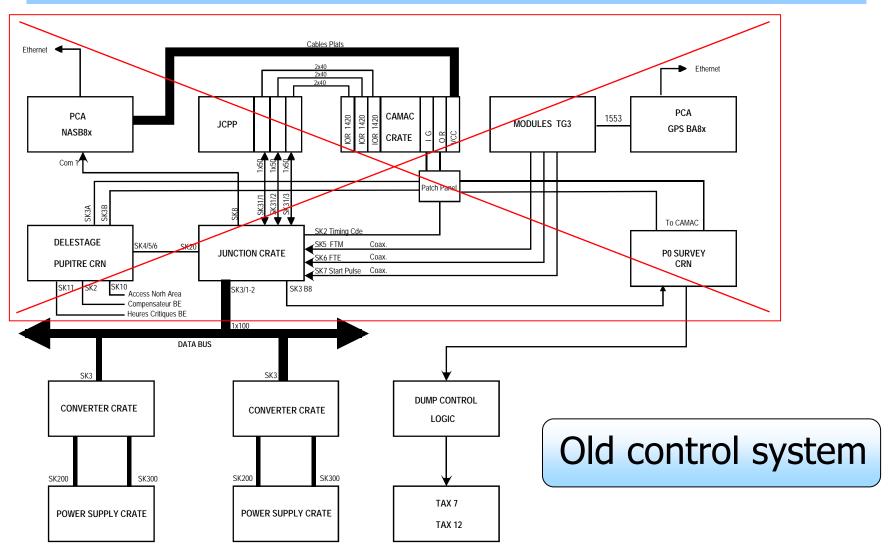

- ♦ SPS NORTH AREA
 - Equipments presentation
 - New control system
 - Start-up problems
 - Operation in the coming years
- ◆ PS EAST AREA
 - Equipments presentation
 - Main concerns
- ◆ CONCLUSION

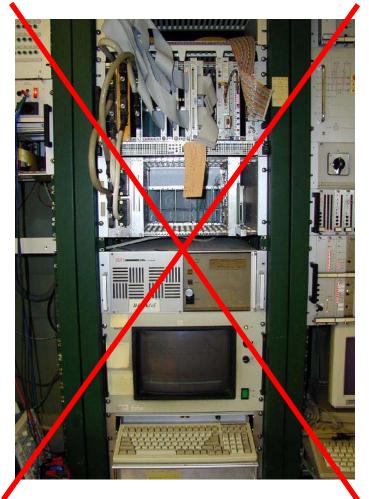
- \bullet 330 PC (25kW \rightarrow 3.6MW)
- **♦** 3 buildings: BA80, BA81, BA82
- ♦ 8 power converter types:
 - C11 250A / 100V
 - R11 500A / 150V
 - R12 500A / 300V
 - R13 500A / 225V
 - R21 1000A / 300V
 - R22 1500A / 250V
 - R31 2500A / 255V
 - R41 6000A / 600V
- ◆ 2 voltage booster types:
 - D21 1500A / 200V
 - D31 2500A / 285V

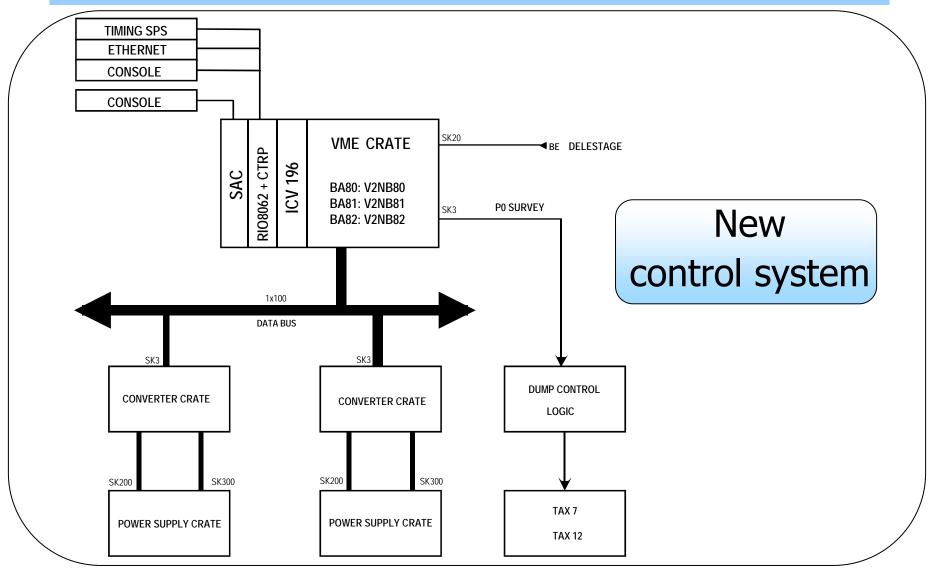
SECONDARY BEAMS


NORTH AREA

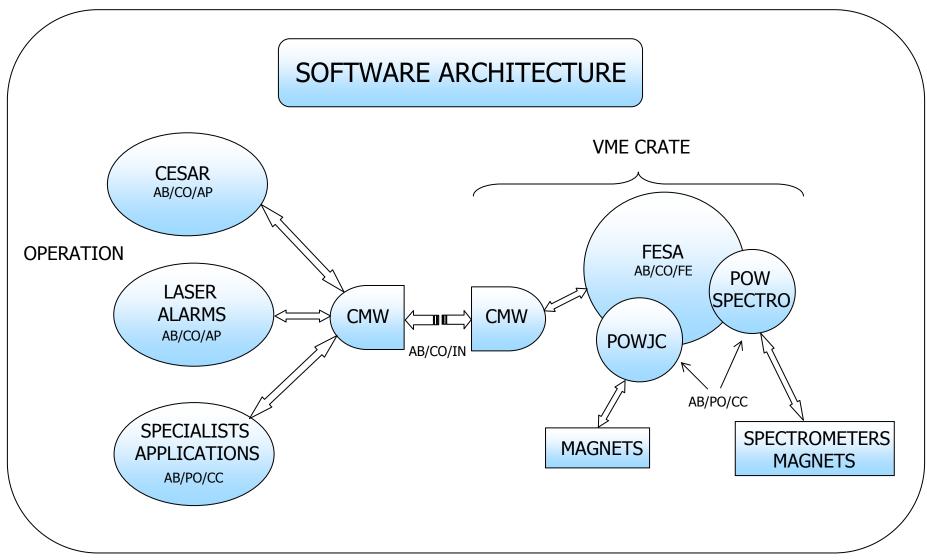



- ◆ In operation since 1976
- Original analog & digital electronics
- ♦ Wire wrap technology


ATC-ABOC Days 24/01/07


 ◆ Junction Crate : Digital Electronic uP 6809, Flex based system

◆ CAMAC + PCA



ATC-ABOC Days

24/01/07

START UP PROBLEMS

DATABUS timing synchronization problem

• Problem: The address trigger signal came too early

• Consequence: Several converters were commanded simultaneous

Solution: The address signal was slowed down in POWJC

DATABUS current load

Problem: To many cards connected to ICV196

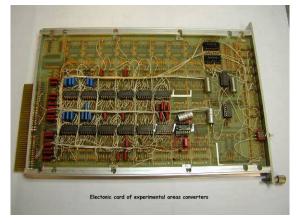
Consequence: Some commands were unsuccessful

Temporary solution: P42-K12 converters disconnected

• Final solution: Drivers will be installed to control the data bus

Ready for next run.

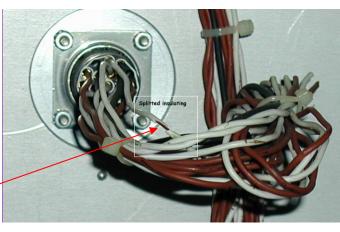
FAULTS STATISTICS


	2004	2006
Exploitation period	26 weeks	20 weeks
Interventions	166	162
Duration of interventions	130 H	155 H
Mean intervention time	47′	57′
Interventions / converters ratio	0.4	0.52
Power faults	21	12
Electronics faults	94	91
Operation faults	6	29
External faults	18	30

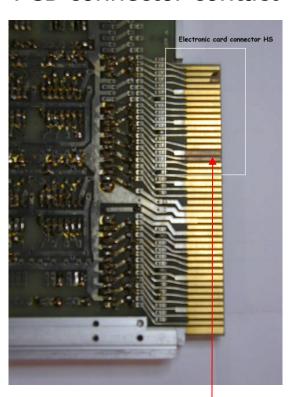
ATC-ABOC Days 24/01/07

MAIN CONCERNS

Electronic card reliability



Wire wrap Obsolete components


Cabling ageing

Split insulation

ATC-ABOC Days 24/01/07

PCB connector contact

Damaged gilded contacts

◆ 100 electronic cards have to be repaired each year

◆ The MTBF of the power converter is very low: ~7000H

◆ Each fault is limited to a beam line (over 6 in north area)

OBJECTIVES FOR THE COMING YEARS

- Keep the same maintenance level with special actions
 - Change obsolete IC of the address cards
 - Clean connectors of the address cards
- Keep the same operation expertise
 - First Line training
- ♦ Keep the intervention time of 1 hour
- ◆ Improvements can only come with a consolidation program

FUTURE CONSOLIDATION PROJECT

- Replace 180 power converters (≤500A) by new switch-mode power converters.
- Renovate 150 thyristor converters.
- New electronic control.

ESTIMATION

- ◆ Budget estimation : 23 MCHF
- Provisional schedule: 6 years
 - 2 years studies and contracts
 - 4 shutdowns for implementation
- ♦ Manpower: 19 FTE
- No budget allocated in AB consolidation! (below red line!)
 Nothing before 2010!

♦ 80 PC (8kW → 2.5MW)

◆ 2 buildings: 251, 263

♦ 10 power converters types:

• T1B 250A / 32V

• R10 250A / 50V

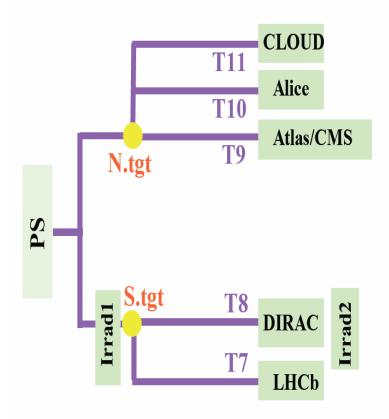
• R1 500A / 100V

• R3 800A / 300V

• R2 950A / 200V

• R2A/R2G 1000A / 220V

• R2B 1000A / 250V


• R31 2500A / 355V

• R6 2500A / 500V

5000A / 1000V

◆ 1 voltage booster type:

• D0 1000A / 150V

- ◆ In operation since 1970
- ◆ Electronics replacement in 1991
- ◆ PS standard control (1553)

FAULT STATISTICS

	2004	2006
Exploitation period	28 weeks	22 weeks
Interventions	40	41
Duration of interventions	33 H	53 H
Mean intervention time	37′	76′
Interventions / converters ratio	0.61	0.63
Power faults	9	8
Electronics faults	14	8
Operation faults	2	8
External faults	15	17

ATC-ABOC Days 24/01/07

MAIN CONCERNS

- Polarity switches :
 - Blocked with 0A reference
 A software modification will be done for next run
 - Some problems with old mechanical position sensors
 Studies to install optical sensors are in progress
- Auxiliary power supplies VERO :
 - Trivolts VERO are not reliable
 Studies to install power modules + DC/DC converters are in progress

SPS NORTH and PS EAST AREAS POWER CONVERTERS

CONCLUSION

SPS North area

- ◆ The new control system is operational since April 2006
- It became stable in September after POWJC corrections
- Electronic reliability is the main concern
- Improvements can only come with a consolidation program
- Project could start in 2010 if a budget is allocated

PS Farth area

- Old power converters
- No consolidation program
- Can we improve diagnostic for magnet faults? Call the right service!
- ♦ What is the future of EAST areas with PS2?

Both Areas are using old power converters with not reliable electronics => High number of First Line interventions