

Standby Services or Reliance on Experts for Accelerator control?

Claude-Henri Sicard AB/CO ATC/ABOC Days 2007

PS Complex Controls Standby service: case study

Plan:

- Organisation
- Domain of intervention
- Statistics of interventions
- Tools
- Some comparative evaluation
- Conclusions

Team of 5 to 6 technicians
Each member on service during one week
Callable by CCC Operation 24/24 during accelerator run (~ 32 weeks)
Applies to 'standard CO' controls (hardware/software), mostly Front-end
Manages spare parts

Tracing: E-logbook, Follow-ups

For proper functioning, this service needs:

- Training: Know geographical, technical details
- Regular information from CO sections (SW or HW updates, new installations, planned interruptions)
- Weekly Contact with Operations team (planned changes, follow-ups)

- <u>Quality assurance</u>: ensure new systems put in exploitation are correctly delivered (files, startup) configured and documented.
- <u>Diagnostic</u>: identify causes of failure within the different layers of control system
- Procedures: non-destructive resets, setting-ups
- <u>Hardware interventions</u>: identify and replace failing components, re-initialize systems
- <u>Software</u>: Restoring operational data, correct configuration of front-end equipments or generic applications, FE startup sequences

Significant Numbers

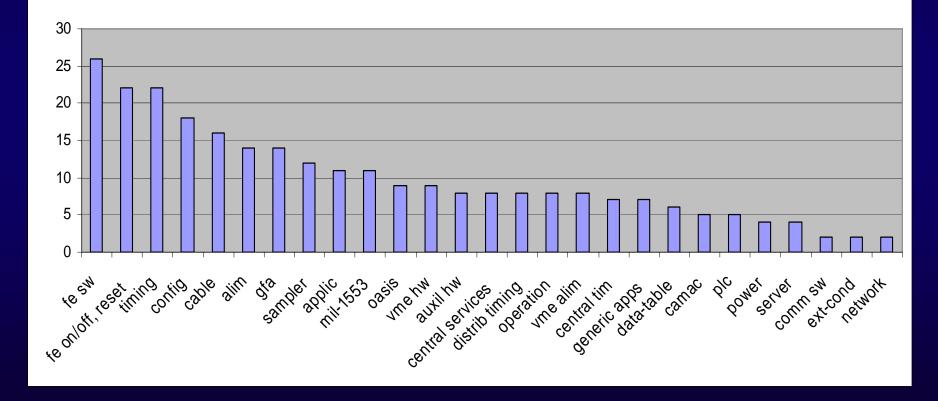
		Camac		1553		GPIB			
Domain	Accel	FECs	loop	crates	loop	crates	crates	Devices	Description
PS	ADE	24	3	3	12	189	9	2067	Antiproton Decelerator
PS	CPS	63	5	8	29	393	4	4453	Cern Proton Synchrotron & beam xfer lines
PS	LEI	32	0	0	5	58		1157	LEIR Low Energy Ion Ring
PS	LN3	10	0	0	6	106	1	427	Lead Ion Linac
PS	ISO	6	0	0	2	3	4	650	ISOLDE facility
PS	LIN	10	2	4	9	156	1	956	Proton Linac
PS	PSB	56	6	9	12	231	8	3648	Proton Synchrotron Booster
TEST	CTF	21	2	11	13	115	0	6228	CLIC Test Facility
TEST	REX	4	0	0	0	0	0	122	REX facility
GEN	MCR	11						195	Equipment common to several accelerators
				1					
		007	10	0.5		1054	07	10000	
Total PS Complex 2		237	18	35	88	1251	27	19903	

An ideal list would include:

- Number / duration of interventions outside working hours ⁽³⁾
- Effectiveness of interventions
- Beam time lost due to controls (8)
- Manpower cost involved ⁽³⁾

Front-End Hardware diagnostic/replacing of:

- Crate
- Power supply
- Cpu
- CO standard cards (list TBD, test pgms)
- Timing:
 - Distribution: repeaters, cables
 - Reception (TG8/CTRx)
 - Specific LTIM config check (no changes)


 Communication / fieldbuses diagnostic/replacing of CO-specific parts (Bus drivers, repeaters, RTI cards):

- Mil1553
- FIP
- Ethernet (->PLCs)

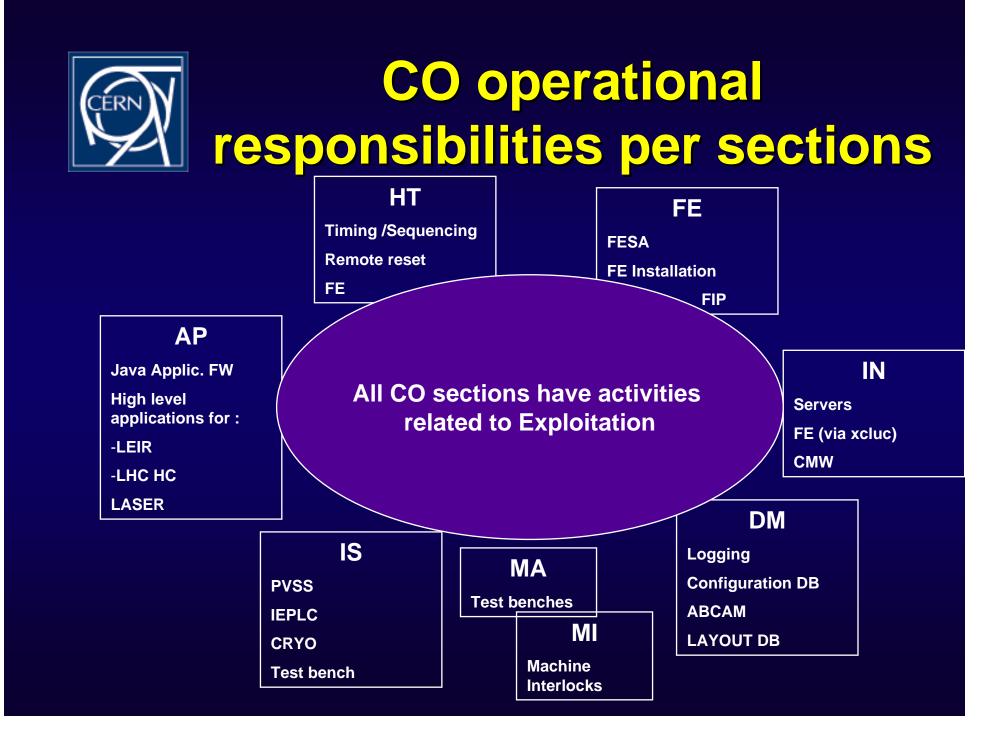
(NOTE: fieldbus agents are normally not CO responsibility)

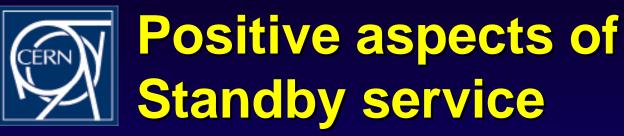
interventions by type (year 2006) total: 268

Year:	2004	2006
Yearly total (registered):	-na-	268
Outside working hours*:	43	35
Duration (h)	66	53
Mean duration:	1h30	1h30
Requiring follow-up:		67

* not counting issues solved by phone/rlogin

- Shared knowledge via:
 - E-logbook intervention list
 - Web-based 'tips and tricks'


Currently, collection of separate diagnostic tools


 Building a unified set of tools is a main work area during this year

Could become usable by operators

 New/extended tools needed for LHC domain

FIP, FESA, PLCs, Industrial controls, 3-tier

- Guaranteed response & single entry point for OP
- Is a link between sections (if piquet spread in whole group)
- Pushes for better & common processes, documentation, diagnostic tools
- Gives wider view of control system to piquet team members
- Globally more efficient in CERN resources (CO piquet can solve basic FE problems for all equipment domains conforming to standard)

 Better spread of exploitation load among sections (reduces risk of overloaded 'exploitation experts')

- Experts need to provide documents & non-expert tools
- May add delays if piquet has to call expert
- Piquet team members only productive 80% of their time
- CO sections (and Eq groups) 'delegate' (drop?) some of their responsibility
- For efficiency, OP needs similar services from main equipment groups

Pros and cons of On-call experts

- OP may need to call several numbers to get an answer
- **8** OP must first diagnose the right domain
- Image: more in-depth knowledge => faster repair
- One of the second se
- One Call list may cover all machines & domains

- A coherent view (across machines) is needed for OP and other equipment groups (as aimed by Control Coordination Committee)
- Piquet team builds competence across control domains (within CO)
- Overlap between fields (outside CO)
 - CO Piquet supports other groups (mostly PO): could be reduced
 - But anyway, efficient support needs some knowledge outside own field

 Should investigate possible common domains with OP/TI