

ABOC / ATC workshop 22 January 2007

Situation of the Static Var Compensators at CERN.

Risk analysis, maintenance and consolidation strategy

Karsten KAHLE, TS-EL

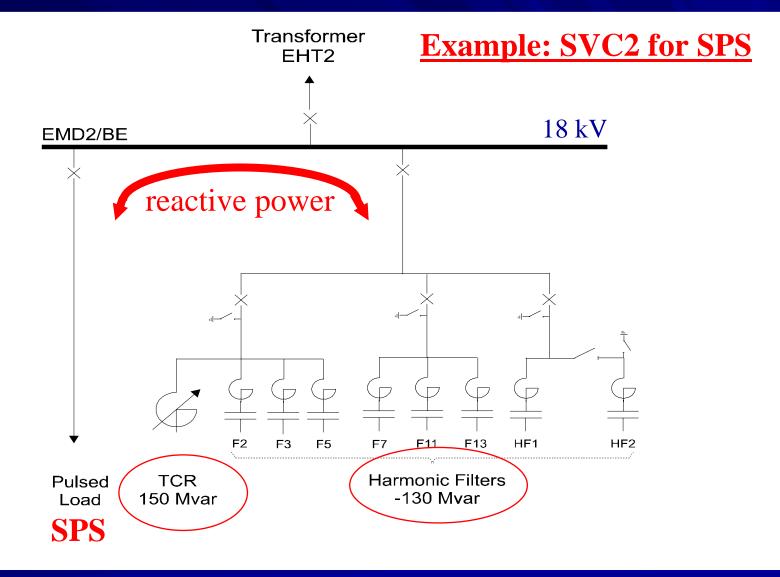
ABOC / ATC workshop 22 January 2007

Situation of the Static Var Compensators at CERN

- 1. Introduction
- 2. General risk analysis for SVC's
 - typical faults
 - how to reduce the risk

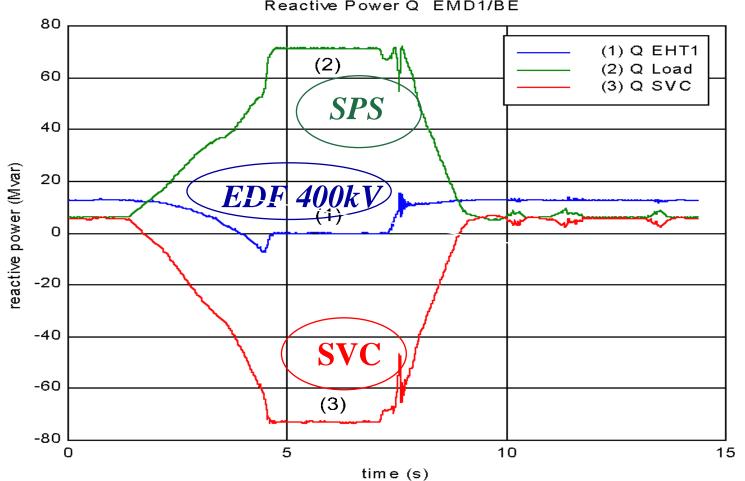
3. The SVC's at CERN in detail

- technical state
- maintenance strategy
- consolidation
- 4. Summary

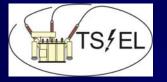

Introduction

Purpose of an SVC:

- Reactive Power compensation
- Voltage stabilization 18 kV
- Harmonic filtering



Introduction

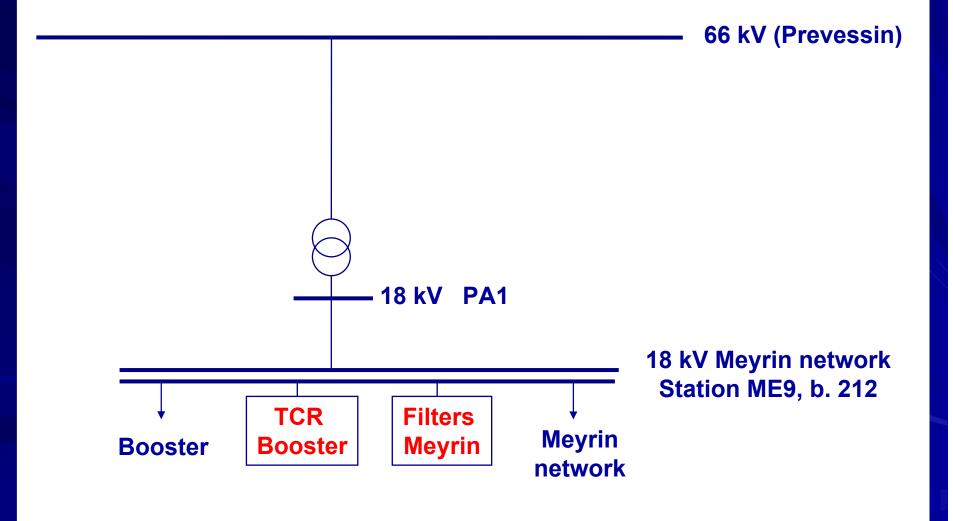


Purpose: Reactive power compensation

Reactive Power Q EMD1/BE

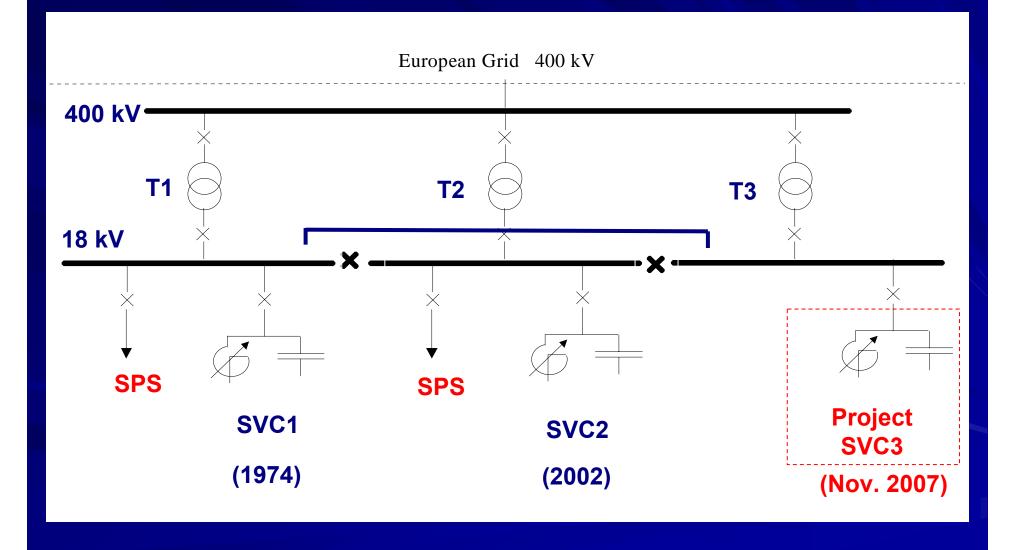
Introduction

SVC's and harmonic filters at CERN (status end 2007):

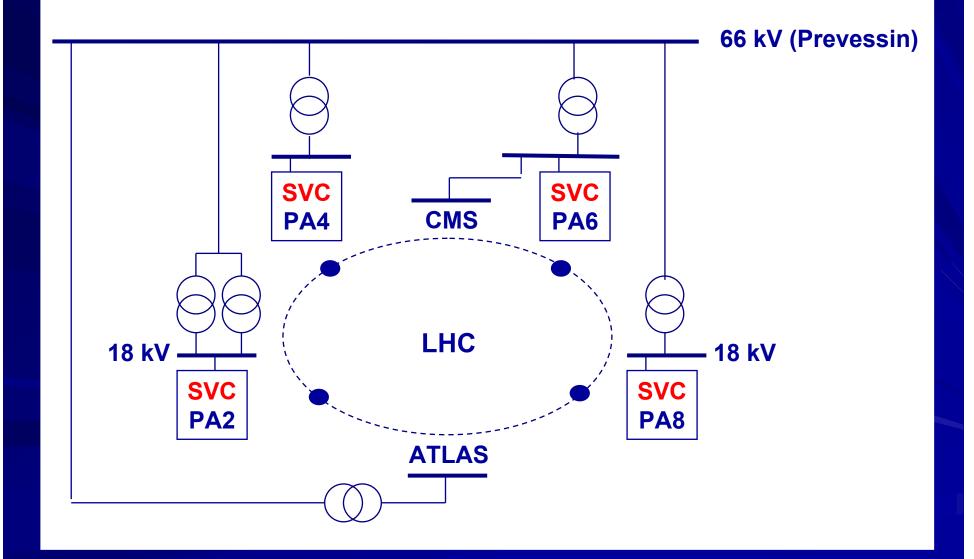

- Total of SVC's / filter inst.: 12
- Rated voltage: 18 kV
- Total surface: $14'000 \text{ m}^2$
- Total value (prices 2007): 45 MCHF
- Total capacitive power:
- <u>For comparison:</u>
 CERN consumption 2008:

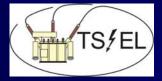
550 Mvar (=17.6 kA @ 18 kV)

380 MVA peak (=12.2 kA peak @ 18 kV)



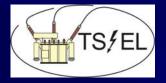
Introduction: Meyrin network and Booster




Introduction: SPS electrical network

Introduction: LHC machine network

Filters Meyrin Booster (build. 202)



1st floor: capacitors

2nd floor: reactors

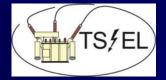
Filters Meyrin Booster (build. 202)

Reactors (1971)


NB: LHC operation depends on them.

TCR Booster (build. 242, Meyrin)

TCR (1997)


SVC1 (build. 884, Prevessin)

Harmonic filters

Saturated reactor (1974)



SVC2 (build. 980, Prevessin)

(year 2002)

Risk Analysis (types of faults) 1/3

Faults with low severity

type of fault	typical downtime TS-EL	probability of event	severity	preventive measures
disturbance of network 400 kV (external cause)	1 h	high	low	none
false trip of protection	1 h	high	low	optimize protection
lack of cooling water, water filter clogged etc.	2 h	high	low	none
miscellaneous (small) failures such as animal entry, Emergency Stop operation etc.	¹∕₂ day	medium	low	none

Risk Analysis (types of faults) 2/3

Faults with medium severity

type of fault	typical downtime TS-EL	probability of event	severity	preventive measures
Trip: capacitor bank unbalance (small capacitor failures)	¹∕₂ day	high	medium	 annual maintenance, monitor capacitor unbalance currents, spare capacitors
Trip: thyristor failure (one thyristor per phase)	¹∕₂ day	low / medium	medium	- spare thyristors

Risk Analysis (types of faults) 3/3

Faults with high++ severity (major events)

type of fault	typical downtime TS-EL	probability of event	severity	preventive measures
overheating of bad electrical connection (short-circuit) - ex: 2003 SVC1	up to 3 days	low	high	- IR thermography - maintenance
capacitor bank avalanche failure - ex: 2006 SVC1	several weeks	low	very high	 annual maintenance, monitor ub currents, spare capacitors
thyristor avalanche failure - ex: 1998 BB3 & 1998 PA2	1 5 days	very low	very high	annual maintenance,spare thyristors
Failure of air-core coil - ex: 1999 LEP PA4	2 3 months	very low	very high	 annual maintenance, spare coils ?(45 types at CERN)
Major internal failure of Saturated reactor <u>(SVC1)</u>	repair impossible	medium	extremely high	 annual maintenance, oil analysis, redundant SVC3

Risk Analysis - Summary

How to reduce the risk?

- consolidation
- redundancy for large SVC's (e.g. SPS)
- annual maintenance
- IR thermography
- sufficient spare parts

SVC Meyrin for Booster

• TCR (20.5 Mvar, 1997)

Technical state	Risk of major breakdown	actions
- good state	low risk	- Annual maintenance
- annual maintenance was		- check avail. spare parts
done		

• Meyrin Filters (17 Mvar, 1972)

Technical state	Risk of major breakdown	actions
- ageing equipment (35 years)	high	- 2007: Annual maintenance
- unknown technical state		 consolidation project
- capacitors (1990)		(will be studied)

SVC1 for SPS

• Saturated Reactor (117 Mvar, 1974)

Technical state	Risk of major breakdown	actions
- approaching end of life time	(very) high risk	 annual maintenance oil analysis / oil treatment

• Harmonic filters (92.1 Mvar, 1974)

Technical state	Risk of major breakdown	Actions
 capacitors (1992) 2 identical faults (1991, 2006) sufficient spare capacitors are available to cover breakdowns 	medium risk of major capacitor failure (again)	 annual maintenance consolidation project (Will be studied. Additional spare parts for SVC2+SVC3 or SVC1 consolidation?)

SVC1: Major breakdown on 8.5.2006 [EDMS 813568]

• Causes:

- identical breakdown happened 1991
- ageing of capacitors
- status of maintenance
- low impedance of HF filter (filter design) ?
- breakdown not linked to manual operation on 1.5.2006

• What has been done so far ?

- re-commissioning in May/June 2006, only minor techn. modifications
- prevention of manual energization
- sufficient spare capacitors available
- major maintenance scheduled for spring 2007

• Risk

- Risk is reduced, but cannot be eliminated

SVC2 for SPS

• TCR (150 Mvar) and harmonic filters (130 Mvar)

(2002)

Technical state	Risk of major breakdown	actions
 good technical state annual maintenance during previous years sufficient spare parts in stock 	low risk	- annual maintenance

SVC3 for SPS

• TCR (150 Mvar) and harmonic filters (130 Mvar)

<u>(2007)</u>

Technical state	Risk of major breakdown	actions
 work in progress energization 1.11.2007 will be identical to SVC2 budget about 6 MCHF 		

Auxiliary Compensator BB3 for SPS

BB3 is required as long as SVC1 is in operation. As soon as SVC1 is out of service (e.g. saturat. Reactor h/s), we can dismantle BB3.

• TCR (18 Mvar, 1982)

Technical state	Risk of major breakdown	actions
ageing equipment (25 years)has been maintained regularly	medium risk	- annual maintenance

• Capacitor bank (18 Mvar, 1982)

Technical state	Risk of major breakdown	actions
ageing equipment (25 years)has been maintained regularly	medium risk	 annual maintenance increase spare capacitors

Stable Filter BEF4 for Stable Network

• Stable Filter (21 Mvar, 1977)

Technical state	Risk of major breakdown	actions
 ageing equipment (30 years) major capacitor failure in 2006 	medium	 2007: Annual maintenance increase spare capacitors

4 SVC's for LEP/LHC in PA2, PA4, PA6, PA8

• TCR (50 Mvar) and harmonic filters (50 Mvar) in PA2	<u>(1987)</u>
• TCR (25 Mvar) and harmonic filters (25 Mvar) in PA4	<u>(1992)</u>
 TCR (25 Mvar) and harmonic filters (25 Mvar) in PA6 	<u>(1987)</u>
• TCR (25 Mvar) and harmonic filters (25 Mvar) in PA8	<u>(1992)</u>

Technical state	Risk of major breakdown	actions
- all SVC's are out of service		 2007: consolidation progr. (Techn. Note EDMS 768037) budget 1.2 MCHF

Summary 1/2

• <u>Goals</u>: - prevention of major SVC failures (high severity)

- repair a.s.a.p.
- <u>Actions</u> for 2007 and beyond:
 - consolidation (4 SVC's for LHC, Meyrin Filters ?, SVC1 ?)
 - commissioning of SVC3 for 1.11.2007 (= redundant SVC for SPS)
 - annual maintenance of all SVC's in service
 - IR thermography
 - intermediate checks during operation (early detection)
 - increase of spare parts in stock (e.g. to cover major failures)

Summary 2/2

• Order of priorities:

1. terminate SVC3 project	2007
2. consolidation PA2 and PA4 (most critical for LHC)	2007
3. consolidation Meyrin Filters for Booster *)	200708
4. consolidation PA6 and PA8 (less critical for LHC) *)	200708

*) order of priority, depending on

- technical state of Meyrin Filters
- future strategy for Meyrin network (PS2, SPL, LINAC's etc.)

Outlook

Spring 2007: - annual maintenance for all SVC's in service

End 2007: - 3 SVC's for SPS (redundant SVC for SPS)

- 2 most critical SVC's for LHC renovated (PA2, PA4)

- strategy for Meyrin network, incl. Meyrin Filter for Booster

Mid 2008: - all 4 SVC's for LHC renovated

End 2008: - depending on strategy: Meyrin Filter for Booster renovated

Questions?

Karsten KAHLE, TS-EL