

EXPERIMENTAL AREA MAGNETS PS EAST HALL + SPS NORTH AREA

W. Kalbreier, D. Smekens, T. Zickler AT-MEL-MI

- I PS EAST HALL MAGNETS
- 1. Overall magnet status
 - Interventions
 - Installed magnets & spares
 - Details MNP23 → ANNEX 1
- 2. Status of 'weak' magnets
- Proposal for an improved East Hall layout Missing documentation → ANNEX 2

EXPERIMENTAL AREA MAGNETS PS EAST HALL + SPS NORTH AREA

II SPS NORTH EXP. AREA MAGNETS

- 1. Overall magnet status
 - Interventions
 - Installed magnets & spares
- 2. Status of 'weak' magnets
- III INSUFFICIENT STAFF
- IV CONCLUSIONS

Acknowledgement: D. Bodart + P. Ziegler have contributed effectively to compile information on the East Hall magnets.

East hall layout

I.1 EAST HALL MAGNETS: BREAKDOWNS DURING OPERATION

2003-4: 3x F61S.BHZ01.MNP23-OSWALD

2006: 2x F61S.BHZ01.MNP23-SEF, T7.QFO01.Q606, T11.QDE01.Q604, F61.QFO01.Q74, F61.QDE02.Q12

East hall F61 line 2nd part Access impossible during PS operation

F61S.BHZ01.MNP23-SEF under test

F61S. BHZ01.MNP23 10-2006 breakdown 3rd coil SEF

East Hall Magnets: in operation & spares as per January 2007

I.2 Status 'weak' magnets

'weak' magnet definition:

- →high risk for operation:
 - failure is likely to happen in the coming years
 - mainly because of the bad state of the coil insulation due to severe radiation damage
- → low or zero operational spare number
- → long down-time when replaced during operation:
 - long cooling-down due to high induced radiation level or
 - requires the opening + closing of the top shielding = 2 weeks or PS stop.

high impact for whole East Hall:

Operates in primary lines: F61, F61S, F61N

High priority

- for revision and/or
- new fabrication shall be given for:

'weak' magnets of

- high impact for the
- operation of the whole East Hall.

East hall primary zone: Access possible during PS operation

Extremely densely packed + covered with concrete shielding roof → for any magnet replacement an opening + closing takes 2 weeks + cool-down + magnet exchange period

'weak' magnet F61S. BHZ01.MNP23

As MNP23 problems have been presented in several ATC sessions in 2006 I skip it here + leave it for questions.

→ For full story → see Annex 1.

→ February 2007: install C-shaped MCB magnet to replace MNP23 for 2007 operation.

ATC-ABOC days 24-1-2007 PS+SPS EA magnets W.Kalbreier, D.Smekens, T.Zickler AT-MEL

'weak' magnets

Q74

Q74

1						
		NEW	ОК	RISKY	SUM	
	OPERATING	0	1	1	2	
		NEW	ОК	UNKNOWN	SUM	
	SPARES	0	1	0	1	
	Importance issues	Risky magnet is in T9 line at QDE01.Q74.02 for AMS/T2K-KEK.				
	2007	Replace risky magnet in 2007 if feasible. If high priority ask budget for 1 new magnet.				
	2008	If budget + additional staff obtained, 1 new magnet could be fabricated.				
	2009		1 spare	available		

Q 600

	Departition of the control of the co				
	NEW	ОК	RISKY	SUM	
OPERATING	0	1	4	5	
	NEW	ок	UNKNOWN	SUM	
SPARES	0	3	2	5	
Importance	T7.QFO01.Q606+QDE02.Q607 for OPERA.				
issues	T7 Beam energy reduced: 10 → 9 GeV				
	T11.QDE01.Q604 + QFO02.Q602 for CLOUD				
	2 risky magnets will be replaced; 1 OK-spare kept.				
2007	The 2 spare units (unknown) must be revised in order obtain 2 operational spares.				
	If successful, replace 3 rd + 4 th risky magnet in 2008.				
	If unsuccessful + priority → budget for 1-2 new magnets.				
2008	If budget + additional staff obtained, 1-2 new magnets could be fabricated.				
2009	risky magnet could be replaced + 1 spare left				

Q 800

7						
		NEW	ОК	RISKY	SUM	
	OPERATING	0	0	2	2	
		NEW	OK	UNKNOWN	SUM	
	SPARES	0	0	1	1	
	Importance	2 op	erating magne	ets are overhea	ating.	
	issues	T10 beam energy reduced: 7 → 6 GeV AL				
		T10.QDE01.Q804 + QFO02.Q803				
		Already 3 broken non-repairable units.				
	2007	1 (highly radio-active) spare must be revised in order to obtain 1 operational spare.				
		l1	successful, k	eep it as spare	are.	
		If unsuccessful + high priority → ask budget for 3 magnets.				
If budget + additional staff obtained, 3 no could be fabricated. 2009 risky magnets could be replaced + 1					ew magnets	
				1 spare		

M105

	NEW	ОК	RISKY	SUM	
OPERATING	0	3	0	3	
	NEW	ОК	UNKNOWN	SUM	
SPARES	0	0	0	0	
	No spare for primary lines Importance F61N.DHZ01.M105.02+F61S.DHZ01.M105.03				
1					
issues		T8.DHZ01.M105.01			
2007	No spare unit → Define priority → If high, ask budget for 1 new magnet.				
2008-9	If budget + additional staff obtained, 1 new magnet could be fabricated.				
2010	spare status ok				

MEP19

'weak' magnets MEP19

	NEW	ОК	RISKY	SUM	
OPERATING	0	0	1	1	
	NEW	ОК	UNKNOWN	SUM	
SPARES	0	0	0	0	
	No spare				
Importance issues	F61N.BVT01.MEP19 with high induced radiation level.				
2007	No spare unit → Define priority → If high, ask budget for 1 new magnet.				
2008	If budget + additional staff obtained, 2 new magnets could be fabricated.				
2009	spare status ok				

Q120

1					
	NEW	ок	RISKY	SUM	
OPERATING	2	0	3	5	
	NEW	ОК	UNKNOWN	SUM	
SPARES	1	0	0	1	
Importance issues			04+QDE02. 02 AMS/T2l		
2007	Consolidation budget obtained.				
	M. Karppinen AT-MEL-MI will launch + follow-up the fabrication.				
	3 Magnets will be fabricated.				
2008	3 risky ma	_	be replaced spare.	d, leaving 1	
	•				

'weak' magnets MEP 35

MEP 35

OK **RISKY** SUM **NEW OPERATING** 0 0 **NEW** OK SUM UNKNOWN **SPARES** 0 0 0 Splitter Magnet in primary line F61.SMH01producing the beam intensity sharing between North and South branch. 2007 Magnet fully enclosed in vacuum container + motorized yoke. Maintenance of motorization shall be done by AB as AT-MEL-MI has no staff in this professional category. 1 spare unit shall be revised; if unsuccessful + high priority → ask budget for 1 magnet. If budget + additional staff obtained, 1 new magnet could be fabricated. 2008-2009 spare status ok 2010

MNPA 38

MNPA 38

	NEW	ОК	RISKY	SUM
OPERATING	0	1	0	1
	NEW	ОК	UNKNOWN	SUM
SPARES	0	0	(5)	(5)

2007

T7.DVT01.MNPA 38.02

No spare unit, but could be replaced by MNPA 30 (5 spares of unknown state).

→ Do revision of MNPA 30 to get 1 spare magnet.

1.3 Proposal for an improved East Hall layout

- Magnets installed 63
- Risky Magnets (now: 11) at start-up of 2007: 8
- Magnet types 22
- Installed per type 2.9

Maintenance of such a high number of different types is:

- expensive and
- with increasing number of breakdowns
- cannot be managed with available staff.

Proposal for an improved East Hall layout

Insufficient space required the design of too delicate magnets like the MNP23 & Q120. Many of the installed magnets are

- have radiation-damaged coil insulation
- unreliable for operation
- expensive in production
- result in too high radiation doses to people
- and too high costs for :
 - -<u>Interventions</u>
 - -Maintenance
 - -replacements

Radiation survey 15/01/2007

East Hall magnets: start of service

Proposal for an improved East Hall layout

The East Hall magnets after about 40 years of service have mostly arrived the end of their lifetime.

East Hall magnets: 8% of NEA but same FTE → 12 times more expensive!

Therefore, it seems the right moment to think about a redesign of the East Hall with fewer magnet types and more space + less lines.

Keeping in mind the savings in

- Manpower
- Radiation budget
 combined with less down-time for physics
 this could even be the more economic solution.

II SPS North Exp. Area Magnets NEA

North Experimental Area

II.1 Interventions per type & per area

Identification of failures

Magnet Status for the primary Beam Transfer

Magnet status for the NEA & secondary Beams

II.2 Status 'weak' magnets + Potential Risks

AI-IVIEL		Magnet Type	Risk	Rating Risk*Impact	Proposed action
	TT20 / TDC2	QTA/L (48 magnets in use in TT20/TDC2/NEA)	Failure of the Coil Water manifold	High (~20 risky magnets) (several repairs every year)	2007: supply of new manifolds for repairs. Next Shutdown: Replacement of weak parts on 20 magnets
ATC-ABOC days 24-1-2007 PS+SPS EA magnets W.Kalbreier, D.Smekens,T.Zickler		MSSB (6 magnets in use)	Failure of vacuum tank or magnet coil due to corrosion	Medium to high (unpredictable) Risk of breakdown in series	2008: Conversion of 1 (or 2) West Area splitter(s) into NEA splitter
	TCC2	MBN (83 magnets in use in TCC2/NEA)	Vacuum Leak due to corrosion in radioactive areas (PVC covers)	High	PVC covers replaced on magnet in radioactive environment last years. Vacuum related problem. But it uses spare magnets.
		MSN (8 in use in TCC2)	Failure of the Coil Water manifold	Medium (probable within 5y)	2007: supply of new manifolds for repairs. 2008-2010: refurbishment of the 3 damaged MSN
ATC-ABOC da		MTR/MTS/QLNRB/ QNLB	Lifetime elapsed. Probably coil failure	Low to medium (unpredictable)	1 spare MTS coil available. Consolidation proposal not yet assessed.

40

QTA/QTL weak point: water distributors

Weak Magnets: QTA/L/R/S

	Situation	RISKY	SUM	
OPERATING	EA standard: QTA:0 / QTL: 1 / QTR: 0 / QTS: 14	> 20	65 magnets in	
	BT standard:	magnets	operation.	
	in TT20/TDC2 :QTA:19 / QTL: 11 / QTR: 0 / QTS: 2		30% of them	
	in other BT lines: QTA:0 / QTL: 14 / QTR: 2 / QTS: 2		risky	
	TOTAL: 65			
SPARES	EA standard: QTA:0 / QTL: 19 / QTR: 4 / QTS: 36	Not	78 magnets	
	BT standard: QTA:4 / QTL: 5 / QTR: 2 / QTS: 8	assessed	spare ! Mostly QTS	
Importance issues since 2006	Main BT quadrupoles for primary beamline TT20/TDC2. Mainly QTA magnets in TDC2, few spare QTA Assembly Tool + workshop + spare coils to reconstruct			
2007	QTA/QTL/QTR/QWL Small consolidation budget available. Manufacture of new parts for 25 magnets (targeting repairs of QTA and QTL in TDC2 – 24 magnets)			
2008	Replacement of weak parts in situ (TDC2).			

TDC2 – Splitter MSSB Overview

D.Smekens, T.Zickler

MSSB Splitters: Version 1 WEA - Version 2 NEA

- **MSSB Splitter Magnet Situation**
 - 1 spare magnet for North Area
 - Corrosion problem on all 6 **North Area MSSB magnets**
- Risk of several failures in a row
- → Availability of 3 West Area MSSB magnets (different septum profile)
 - **Conversion WEA MSSB into NEA MSSB seems possible**

Replacement of 1 complete upper yoke+vacuum tank: ~115kCHF

North Area Version

MSSB Splitter magnet: Cross Section

Weak Magnets: splitters MSSB

	Situation	RISKY	SUM		
OPERATING	NEA standard: MSSB Type 2: 6 magnets in use in	All MSSBs in TDC2	6		
	TDC2 WEA standard: MSSB Type 1: 0 in use	IN TDC2			
SPARES	NEA standard: MSSB Type 2: 1 spare new magnet	None	5 spares		
	WEA standard: MSSB Type 1: 4 spares		(4 not compatible		
	(recuperated magnets)		with NEA)		
Importance issues	2 triplets of MSSB used to split the primary beam toward T2/T4/T6 targets				
2007	No consolidation budget available. Study feasibility to convert WEA MSSB into NEA MSSB (NEW UPPER YOKE + VACUUM TANK REQUIRED)				
2008-09 If consolidation money available, conversion of 1 to 2 WEA to			EA to NEA MSSB		

MBN Weak points: Corrosion of vacuum chamber

- → Vacuum leaks. Due to corrosion of the stainless steel in contact with the PVC material used for the covers (made in the 70's).
- → Not repairable in situ. Leaky Magnets have to be replaced

III Insufficient staff

STAFF PROBLEM

AT-MEL-MI STAFF EVOLUTION

CONCLUSIONS 1 East hall magnets

Severe reliability problems due to

- About 40 years old magnets
- Coils heavily radiation damaged
- Yokes often with high induced radio-activity → high irradiation of staff at maintenance + repair
- Low or zero operational spares for several types
- Too many (22) types for 63 magnets
- Some of too delicate design + expensive in production

CONCLUSIONS 2 East hall magnets

The East Hall magnets have mostly arrived at the end of their lifetime.

Therefore, it seems the right moment for a

- redesign of the East Hall with
- fewer magnet types and more space.

Otherwise a considerable effort in P+M must be invested to:

- Replace risky magnets
- Improve the current spare situation

CONCLUSIONS 3 NEA magnets

Status is less critical than for the PS East Hall.

Magnets are about 30 years old.

Primary lines: 240 magnets, magnets/type 6-7

Secondary lines: 540 magnets, magnets/type 19

- → TDC2/TCC2 concentrate most of the problems.
- → Expected improvements by 2008:
 - QTA/QTL water manifold problem solved in TT20/TDC2
 - 2 to 3 Spare MSSB magnets available in case of breakdowns
- → by 2010 : Additional spare MSN magnets

CONCLUSIONS 4 NEA magnets

Remaining Issues:

- No spares for 1 QM + 3 MTS + 4 MTRV + 4QNRB
- Only 1 MSN spare unit
- Few MBNV spare units
- Obsolete Magnet Interlock System

CONCLUSIONS 5 AT-MEL-MI STAFF PROBLEM

The staff is declining dramatically due to:

- Ending LD contracts end 2007 to mid 2008.
- Already 4 staff Cat 2xC, D, E have left to AB.
- Retiring staff
- Replacements inside MEL done 9-2006.
- → Huge loss in expertise + effectiveness

Already for the basic programme we do just have

- sufficient staff for 2007,
- But NOT for the following years.

CONCLUSIONS 6 AT-MEL-MI STAFF PROBLEM

We need already in the current of 2007 strong influx of experienced staff (cat C + D) to be trained in magnet manufacture, testing and maintenance. Without this input of experienced staff:

- → We cannot fullfill for >2007 our tasks for the basic programme : PS+ SPS + LHC (nc magnets)
- → Consequently beyond the basic programme we have to decline all tasks for:
 - PS + SPS Experimental Areas + CNGS
 - CTF3 + CLIC
 - PS-MTE + LINAC4 + SPL + PS2

ANNEX 1 F61S BHZ01-MNP23

- →1st generation (3 different designs) showed coil insulation + water cooling + short circuit leading to completely burnt coil insulations) problems starting already in the 1990^s.
- Status in 2001. → No more spares from 1st generation + F61S-BHZ01 needed to be replaced.
- → 3 new magnets were built in 2001 at OSWALD/DE by T. Zickler (2nd generation).
- → Damaged unit in F61S was replaced the 1st unit of the new septum in March 2002 & operated until November 2003 (→ water leak + cooling channels blocked due to corrosion).

ANNEX 1 F61S.BHZ01.MNP23-OSWALD

ANNEX 1 F61S.BHZ01.MNP23-OSWALD

ANNEX 1

F61S.BHZ01.MNP23

- → July 2004: high leakage current + cooling channels blocked by a deposit stemming from corrosion. → required the replacement of the 2nd unit operating since March 2004.
- → November 2004: same problems with the 3rd unit operating since September 2004.

ANNEX 1 F61S.BHZ01.MNP23

- → An analysis by V. da Silva AT/MEL/MI in 2005 showed that corrosion problems were due to insufficient quality of the demineralized water:
 - too high conductivity (up to 15 microS/cm, nominal 0.5 microS/cm),
 - resin cartridges not regularly exchanged and problems of monitoring the conductivity.
 - As a consequence of the low water quality the inner walls of the cooling channel were corroded resulting in a deposit of CuO + Cu₂O blocking the water circulation of the coils.
- →In close collaboration with TS/CV we purchased + installed new devices to monitor the water quality online (operational since 3-2006).

ANNEX 1 CORROSION AT F61S.BHZ01.MNP23-OSWALD

ATC-ABOC days 24-1-2007 PS+SPS EA magnets W.Kalbreier, D.Smekens, T.Zickler AT-ME

CuO + Cu2O deposit blocking the cooling channels

ATC-ABOC days 24-1-2007 PS+SPS EA magnets W.Kalbreier, D.Smekens, T.Zickler AT-ME

ANNEX 1 CORROSION AT F61S.BHZ01.MNP23-OSWALD

- →2005: Fabrication of 5 new coil sets (3rd generation) to be mounted in the existing yokes at SEF/FR. The coils had improved cooling features (cooling per half-turn instead per full-turn) in order to reduce the very high water speed and the maximum coil temperature.
- → March 2006: Installation of MNP23 with 1st new coil set from SEF.
- → April 2006: a short circuit required the replacement of the MNP23 just before beam operation.
- → July 2006: an electrical breakdown in the 2nd coil set required the replacement of the magnet.
- →October 2006: an electrical breakdown in the 3rd coil set ended its operation after 4 weeks only.

- → As the origin of the breakdown was fully unclear, it had been decided to use the 4th coil set in order to launch a study including simulations and measurements under true operating conditions (except beam).
- → A study started in November 2006 by M. Zerlauth AB-CO & J. Kozak AT-MTM, D.Bodart AT-MEL & A.Beuret AB-PO using the 4th coil set.
- → The preliminary results after about 4 weeks were as follows:
 - no convincing fault explanation yet
 - the max over-voltage spikes from the power converter are only about 50% above the nominal max of 400 V.
 - several kV are required for causing the severe damage observed!

ANNEX1

F61S. BHZ01.MNP23

- → Mid-February 2007: The study will continue when cooling water is again available until the origin is found.
- → Results will be used for an improved fabrication of the 5th new coil set followed by long-term testing before an eventual re-installation in 2008.
- → February 2007: install C-shaped MCB magnet to replace MNP23 for 2007 operation.

ANNEX 2 EAST HALL MAGNET RESPONSIBILITY

	Magnet ownership	Magnet maintenance	Co-ordination Magnet installation, book-keeping, alignment, vacuum
1996-2004	PS → AB- ATB	SL-MS → AT- MEL	PS → AB-ATB
11-2004	AT-MEL	AT-MEL	AB-ATB

see Memo dated 18 August 2004 about the responsibility for normal-conducting magnets (ref. OUT-2004-058-annex Rev.1).

EAST HALL MAGNET missing documentation

- → Up to now AT-MEL (with exception of a magnet listing + X-section layout) has not received the required documentation needed for a proper maintenance or rebuilding of the magnets.
- → This 'electronic' documentation for each type shall consist of:
 - Scanned specifications
 - Drawings in CDD

This task is really urgent + shall be done by AB-ATB, as they have the documents + were the owners. AT-MEL has no manpower for this.

Per type it will take at least 1 week.

So for 22 types it is 6 months work of a good Cat 3 person.