# Operations of the NA, EA and CNGS

K. Cornelis

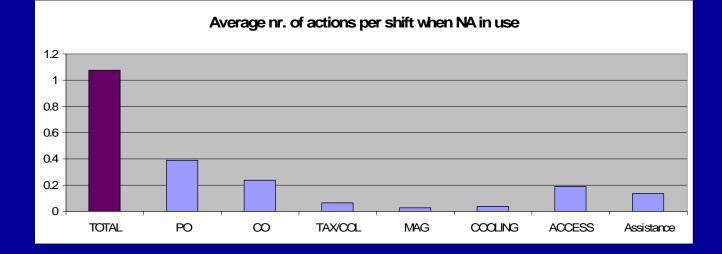
### Content

- Organisation
- Impact on operations
- Tools and support
- Conclusions.

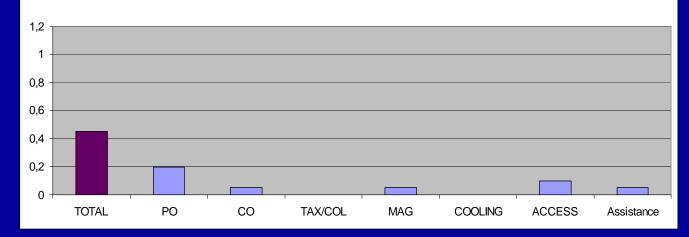
# **Organization of EA operations**

#### • EAST HALL

- Secondary beams are operated by the users.
- PS operators handle technical problems.


#### NORTH AREA

- Setting up (commissioning) of secondary beam lines done by EA experts. They provide operational setting files.
- SPS operators handle the technical problems of the secondary beam lines.
- SPS operators change beam conditions according to schedule using operational setting files


# Impact of the North Area on operations

- Since 2003 SPS-OP has taken over the operation of North and West area, before in hands of an ad hoc OP group.
- Responsibility for access patrols in the experimental zones was transferred to the users in 2004.
- 2003 and 2004 were "easy" years (one type of beam) but how does it look like in the LHC era?

#### Impact of NA on operations (seen from the logbook)



#### Average nr. of actions per shift when NA not in use



| 43.000<br>h<br>g config<br>COMMENT<br>New<br>Mail | we received a call from H6; they say they loaded beam file<br>H6A001, which they used already in July but the beam intensity<br>is much too low; we found that current wobbling settings for<br>T4 are not compatible with what H6 wants (hadrons @ +120GeV)<br>created by spsop on cwo-ccc-a6lc |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>Comment<br>New<br>Mail                       | wobbling settings of T4 before change, which was suggested by<br>Ilias, whom we called for advise                                                                                                                                                                                                |
|                                                   | T4 wobbling.png<br>created by spsop on cwo-ccc-a6lc                                                                                                                                                                                                                                              |
| 4                                                 | loaded wobbling T4.001 (H6@+120) and "autopiloted" beam to T4<br>(in 5 SC the symmetry went up from 56% to 96% !); N.Doble (P0)<br>is happy and H6 sees beam; H6 still check a few things                                                                                                        |
| Comment<br>New<br>Mail                            |                                                                                                                                                                                                                                                                                                  |
|                                                   | T4 wobbling.png                                                                                                                                                                                                                                                                                  |

#### Example

#### Other examples

|          |       | TION will be shown the success from 1000 Gatt/s       |
|----------|-------|-------------------------------------------------------|
|          |       | H2A call to change the energy from +300 GeV/c         |
|          |       | (H2B.010) to +200 GeV/c (H2B.018).                    |
|          |       | H2B.018 file loaded.                                  |
|          |       | The beam is not centered on the experiment.           |
|          |       | We try to scan over the experimental scaler           |
|          |       | H2B1 EXPT01 but the scan result is not consistent.    |
| 14       |       | After some discussion we try to load the file H2B.125 |
| Comment  |       | (+150 GeV/c) that was fine for Pamela experiment but  |
| New      | 20:36 | the beam is still not centered in horizontal plane.   |
| INGM     |       | This time we center the beam on the MWPC09 using the  |
| Mail     |       | BEND6 (TRIM08 is not strong enough) but the           |
|          |       | H2B1 EXPT01 count is still not fine.                  |
|          |       | Finally the experiment find that the high voltage of  |
|          |       | the experiment scintillator plugged to the            |
|          |       | experimental scaler was too low!                      |
|          |       | Called L.Gatignon that suggest to use also the BEND7  |
|          |       | to center the beam!                                   |
| <u> </u> |       |                                                       |

| 2       |       | radiation alarm level B from monitor PAXN1462; H8<br>called to say they don't have beam anymore        |
|---------|-------|--------------------------------------------------------------------------------------------------------|
| Comment |       | created by spsop on cwo-ccc-a6lc                                                                       |
| New     | 13:22 |                                                                                                        |
| Mail    |       |                                                                                                        |
|         |       |                                                                                                        |
| 3       |       | radiation alarm triggered because H6 went from high                                                    |
| Comment |       | intensity beam to low intensity beam and they first                                                    |
| New     | 13:26 | opened collimators before reloading rectifier<br>currents; reset radiation alarm and re-establish beam |
| Mail    |       | for H8                                                                                                 |

### Problems seen by the operators

- Communication and information
  - Beam line schedules and schedule changes.
  - What experiments are allowed to request.
  - Up to date patrol lists

• Some new experiments don't seem to know their environment.

### Impact of NA on operations with frequent supercycle changes

- Problem of stability of TT20 especially the sharing between T2,T4 and T6.
- Information to experiments.

### **Tools and support**

- Support from EA specialists is essential
- Organisation of information is under discussion.
- Access to optics of the lines.
- CESAR : positive balance, but some useful improvements can help us a lot.
- Autopilot for target steering is of great help.

# Impact from CNGS

- Static operation : shoot the beam in the middle of the target.
- One steering per day keeps perfect conditions and you can leave the line untouched for over a week before it is out of tolerance.
- Simple but dangerous (lot of interlocks some of which using PC-current and beam measurements.)
- Main operation's effort is on keeping the beam quality in the ring. Especially with frequent SC-changes.

### Tools and support for CNGS

- Display, diagnostics of interlock system.
- Good functioning of monitors in beam line indispensable.
- Need of specialist help for beam-monitorstarget-horn alignment.
- Heavy involvement of RP in access procedures.

### Conclusions

- Operating EA,NA and CNGS in the LHC era should be possible provided we take care of some points :
  - Communication and information channels with EA and physicists should be enforced and maintained.
  - Good tools are essential to do more work with less people.