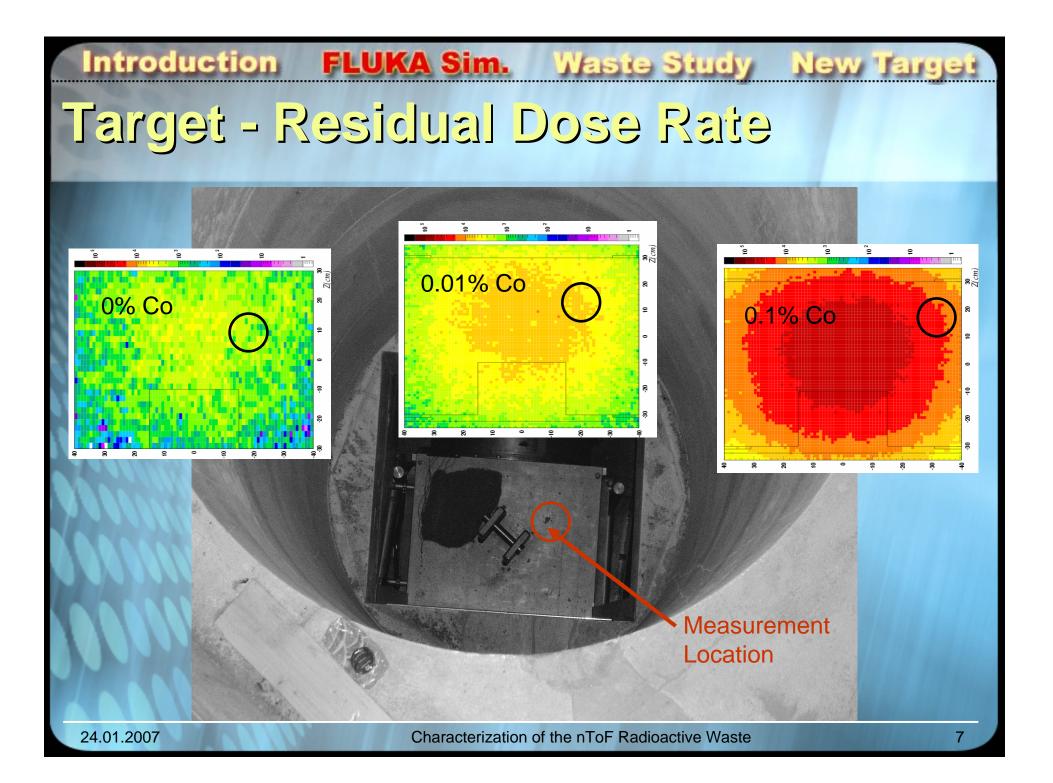
Characterization of the nTOF Radioactive Waste

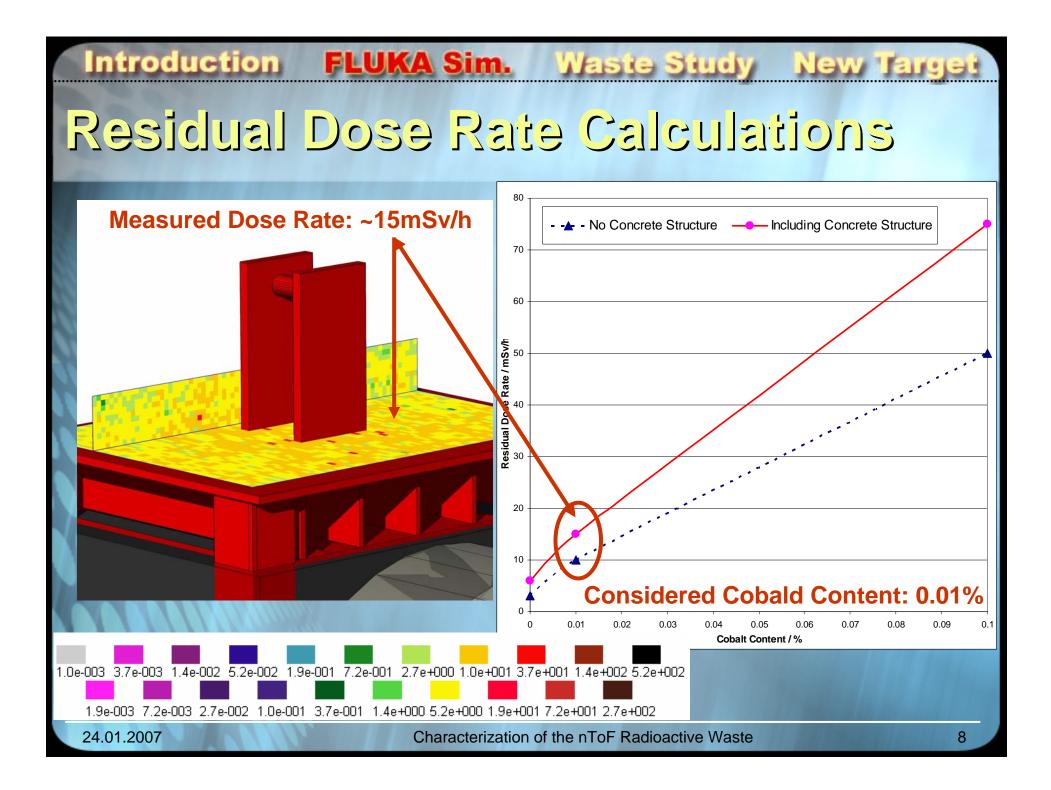
M. Brugger, P. Cennini, A. Ferrari, V. Vlachoudis CERN AB/ATB/EET

Introduction FLUKA Sim. Waste Study New Target Overview **FLUKA Calculation Details & Method** Geometry, beam details, irradiation & cooling times Relevant quantities Results Target with pure composition First estimate for detailed composition Respective inherent uncertainties New target General design goals 24.01.2007 Characterization of the nToF Radioactive Waste 2

Introduction FLUKA Sim. Waste Study New Target

The Target...

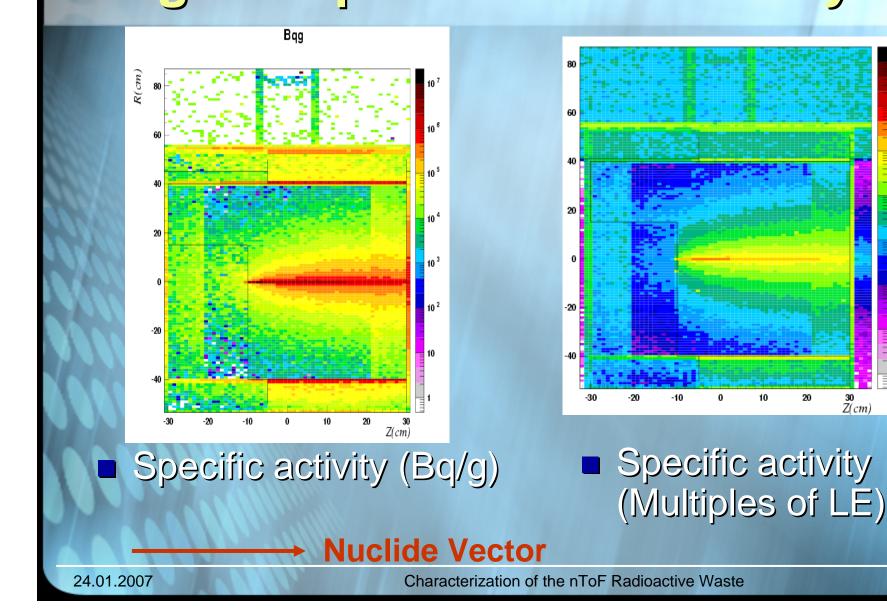

Introduction FLUKA Sim. Waste Study New Target FLUKA Calculations Detailed geometry target and support, surrounding structure (shielding, cooling basin,...) downstream tunnel structure Beam & Irradiation Parameters Irradiation time: 6 months/year Proton intensity: 5x7x10¹² p/supercycle Protons on target: 3.2x10¹⁹ p/year (real average: 1.3x10¹⁹ p/year) Activation of target specific and total activity as well as expression of the first as multiple of the exemption limits 24.01.2007 Characterization of the nToF Radioactive Waste 4


Introduction FLUKA Sim. Waste Study New Target **Geometry Details**

24.01.2007

Characterization of the nToF Radioactive Waste

Introduction FLUKA Sim. Waste Study New Target Target in the Pit Earth Target Pit filled (concrete) 200 R(cm)150 100 50 Beam -50 -100 -150 -200 150 200 Z(cm) -150 00 -50 50 100 Marble **Beam Pipe** Concrete 24.01.2007 Characterization of the nToF Radioactive Waste 6



Introduction FLUKA Sim. Waste Study New Target Radioactive Waste Nuclide inventory specific and total activity content of alpha emitters Elimination pathway • temporary, intermediate & final storage acceptance by NAGRA/PSI maximum alpha content, residual dose rate Transport class A contamination, residual dose rate, container

Introduction FLUKA Sim. Waste Study New Target Radioactive Waste Nuclide inventory specific and total activity content of alpha emitters Elimination pathway • temporary, intermediate & final storage acceptance by NAGRA/PSI maximum alpha content, residual dose rate Transport class A contamination, residual dose rate, container 24.01.2007 Characterization of the nToF Radioactive Waste 10

Introduction FLUKA Sim. Waste Study New Target Target Disposal - Waste Study

10⁶

10 5

10⁴

10³

Introduction	FLUK	A Sim	Wa	ste	Stud	y N	ew Ta	liejed
Lead Target (pur								
Nuclicle Vector			Isotope	T 1/2 [s]	Specific Activity [Bq/g]	Excemption Limit (LE) [Bg/g]	Multiples of LE	
				²⁰⁴ T1	1.192×10 ^s	3.050×104	8	3812
The FLUKA study is based			¹⁹⁴ Hg	1.640×10 ¹⁰	2.812×10 ²	0.2	1406	
			⁶⁰ Co	1.662×10 ⁸	2.553×10 ²	1	255.3	
			¹⁷² Lu	5.789×10 ⁵	1.744×103	8		
			¹⁹⁵ Au	1.608×10 ⁷	8.290×103	40		
on the entire nToF operation				¹⁷² Hf	5.897×10 ⁷	1.727×10 ³	10	
period (2001-2004)			¹⁰⁶ Ru	3.228×10 ⁷	1.596×10 ²	1	159.6	
			¹⁰⁶ Rh	2.980×10 ¹	1.596×10 ²	1	159.6	
			³ H	3.888×10 ^s	1.915×10 ⁴	200	95.75	
Several coo	ling tir	nos v		²⁰⁷ Bi	9.950×10 ^s	6.609×10 ²	8	
	mig m		1212	¹⁰⁹ Cd	3.997×10 ⁷	3.746×10 ²	5	
calculated; shown results				¹⁷³ Lu	4.320×107	1.638×10 ³	40	
Caliculated, Shown results				⁶⁵ Zn	2.110×10 ⁷	1.167×10 ²	3	
rofor to Mai 2006				¹³³ Ba	3.318×10 ^s	2.108×10 ²	10	
refer to Mai 2006				¹⁰¹ Rh	1.041×10 ⁸	3.371×10 ²	20	
				⁵⁴ Mn	2.697×10 ⁷	1.522×10 ²	200	
Target assumed to be pure				¹⁷⁹ Ta ¹⁹⁴ Au	5.645×107	3.029×10 ³	200	
				⁸⁸ Y	1.369×10 ⁵	2.812×10 ²	20	
			¹⁹³ Pt	9.215×10 ⁶	1.044×10 ²	300	11.14	
Stainl	ess Steel F	Frame		¹⁸⁵ Os	1.577×10 ⁹ 8.087×10 ⁶	3.344×10 ³ 1.812×10 ²	20	
	Specific	Excemption	Multiplaced	¹⁴⁵ Sm	2.938×10 ⁷	3.101×10 ²	50	
Isotope T 1/ [s]	Activity	Limit (LE)	Multiples of LE	⁵⁵ Fe	2.550×10 8.609×10 ⁷	1.620×10 ²	30	
	[Bq/g]	[Bg/g]		¹⁴³ Pm	2.290×10 ⁷	2.013×10 ²	40	
⁶⁰ Co 1.662		1	18350	¹⁵³ Gd	2.230×10 2.087×10 ⁷	1.619×10 ²	40	
⁵⁵ Fe 8.609		30		¹⁸¹ W	1.047×10 ⁷	3.311×10 ²	100	
⁵⁴ Mn 2.697		70	040.0	¹⁴⁵ Pm	5.582×10 ⁸	1.414×10 ²	90	
⁵³ Ni 3.157× ⁵⁷ Co 2.348×		50		¹⁵⁹ Dy	1.248×10 ⁷	1.025×10 ²	100	
⁵⁷ Co 2.348× ⁴⁹ ∨ 2.920×		600		⁴⁹ V	2.920×10 ⁷	8.028×10 ¹	600	
v 2.920	J.200×10	000	4.54	⁸⁵ Kr	3.392×10 ⁸	7.711×10 ¹	1×10 ^{+ *}	7.711×10 ⁻³

Introduction FLUKA Sim. Waste Stud	y)	lew	Targ	et
	Isotope 205Po	a [Bq/g]	A [Bq]	
	208Po	2.21E-20 6.98E-01	9.64E-15 3.04E+05	
Nuclide Vector 💳	210Po	5.68E-01	2.48E+05	
	211Po	4.24E-08	1.85E-02	
	²¹² Po	9.34E-02	4.07E+04	
	²¹³ Po	1.19E-04	5.18E+01	
First estimate for detailed	²¹⁴ Po	9.43E-05	4.11E+01	
	215Po	1.52E-05	6.60E+00	
	218Po	1.45E-01	6.34E+04	
	²¹⁸ Po ²¹⁵ At	9.43E-05	4.11E+01	
composition (NAGRA)	217At	3.48E-11 1.22E-04	1.52E-05 5.30E+01	
	218At	1.89E-08	8.26E-03	
	219At	1.30E-11	5.64E-06	
Simplified geometry, high	217Rn	1.33E-07	5.80E-02	
Simplified deometry , nicin	218Rn	1.89E-11	8.26E-06	
	219Rn	1.52E-05	6.60E+00	
	220 Rn	1.45E-01	6.34E+04	
statistical uncertainties	222Rn	9.43E-05	4.11E+01	
	221Fr	1.22E-04	5.30E+01	
	223Fr	2.16E-07	9.41E-02	
	221Ra	1.22E-07	5.30E-02	
Low-alpha content	²²³ Ra ²²⁴ Ra	1.52E-05	6.60E+00	
	225Ra	1.45E-01 9.43E-05	6.34E+04 4.11E+01	
	225Ac	1.22E-04	5.30E+01	
~2 Bq/g specific alpha activity	227Ac	1.57E-05	6.84E+00	
	228Ac	1.55E-08	6.76E-03	
	227Th	1.52E-05	6.60E+00	
$(\sim 10 k Ra/a) \longrightarrow$	²²⁸ Th	1.44E-01	6.30E+04	
(<10kBq/g) →	²²⁹ Th	1.22E-04	5.30E+01	
	230Th	4.71E-05	2.05E+01	
• ~1 MBq total activity	²³² Th ²³⁴ Th	4.08E-03 1.53E-07	1.78E+03	
	²³¹ Pa	1.53E-07 1.56E-04	6.68E-02	
	234Pa	1.99E-10	6.80E+01 8.68E-05	
	231U	1.11E-45	4.84E-40	
To be confirmed by detailed	233U	5.29E-04	2.30E+02	
	234U	3.64E-06	1.59E+00	
	235U	1.11E-03	2.41E+02	
	236U	9.34E-08	4.07E-02	
FLUKA calculations	238U	1.24E-02	5.42E+03	
	239Pu	3.08E-03	1.34E+03	
24.01.2007 Characterization of the nToF Radioactive Was	sum	1.96E+00	8.55E+05	13

Residual Dose Rate Maps

Introduction FLUKA Sim. Waste Study New Target

3D residual dose rate maps are available for various cooling times

Hotspots are located at the entry and exit point of the beam as well as around the stainless steel support

24.01.2007

Introduction FLUKA Sim. Waste Study New Target

Related Uncertainties

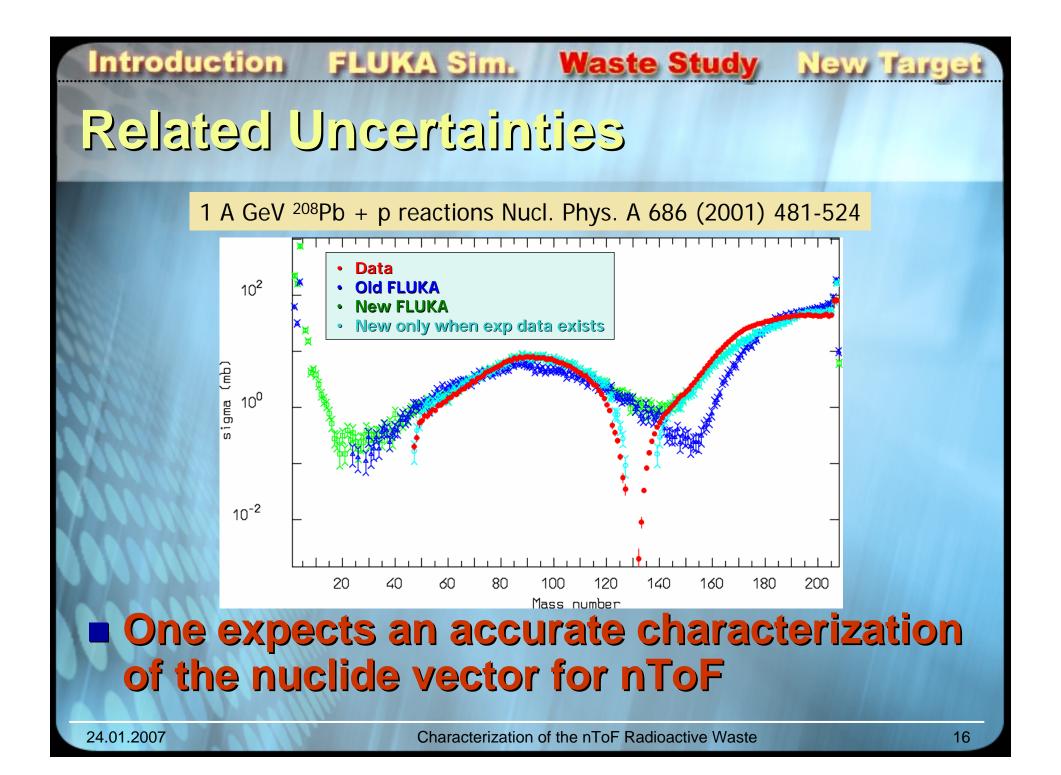
Chemical Composition

- accurately known for the Pb (e.g., 19ppm Bi)
- for Steel: "known" from benchmark experiments, confirmed by dose rate measurement and finally to be confirmed during the target removal

Irradiation History

beam intensity and irradiation time profile is accurately known

Geometry


• implemented in a very detailed way

Statistical Uncertainty of MC Calculation

- good statistics for pure lead case
- important uncertainties for estimate of the alpha content
- to be improved with a more detailed calculation

FLUKA Models – Activation/Residual DR

- well benchmarked for low-mass materials at CERF
- recent comparison for high mass isotopes show a very good overall agreement (see next slide)

Introduction FLUKA Sim. Waste Study New Target Target Disposal - Conclusion Characterization of the nuclide vector Specific activities, total activity, residual dose rate (for different cooling times) detailed calculation and good statistics for pure target first estimate for detailed composition including alpha emitters (showing low levels) additional measurements during the target removal Transport should be performed as Class-A final activation levels are checked hot spots of target can be shielded **Possible elimination pathway** all necessary quantities are prepared coordinated by NAGRA, to be sent to PSI details currently prepared (more in the talk of L. Ulrici)

Introduction FLUKA Sim. Waste Study New Target stnistanoo npized tepraT well **Target Design** not in direct contact with the cooling water • optimized smaller dimensions less material minimizes radioactive waste production however, leads to higher contact dose rates - compensated by a respective target container Update of FLUKA calculations nuclide inventory residual dose rates handling procedures Inspection of old target is necessary for the final verification measurements of specific activity and residual dose rates 24.01.2007 Characterization of the nToF Radioactive Waste 18