New nTOF target: Design Issues

Abstract: Following the radiation safety requirement that nTOF lead target shall not be in contact with the cooling water, an entirely new target assembly must be developed. The concept of a clad target is described.

Preliminary designs of target geometry and target integration in the existing cooling loop are shown, as well as structures for positioning and installation.

Outline

- > Introduction
 - Old Target versus New
- Design issues
 - Radiation Safety → Target Cladding
 - Cooling → Geometry of Target Assembly
 - Integration → Supports & Installation
- > Summary
- Estimated cost, manpower, time

Introduction

- > Satisfy the safety requirements of SC/RP
 - Clad lead target cooled by existing system
- Guidelines for the new target design
 - Keep the neutron flux characteristics
 - Reduce radioactive waste (target mass)
 - Reduce overall activation

From ABMB meeting, 12 June 2006

Remark

This presentation shows:

- First studies to identify design issues
- First simulations (thermal, mechanical) give preliminary results to guide design
- > Estimations for cost, manpower & time
- Work and results from:
 SBM Ingénierie & AB/ATB & TS/MME

Introduction

Old Target

- Lead blocks directly in contact with cooling water
- Target mass > 4 tons
- Support structure entirely stainless steel (water basin in aluminium → corrosion risk)

New Target

- No direct contact between target lead & water circuit
- Smaller target (~1 ton)
- Optimised support structure (corrosion, activation, etc.)

Design issues: Radiation Safety

Target Cladding

Metal(*) clad lead target with lead core

Consequences of cladding:

- 1. Thermal contact resistance between lead and cladding. Need for good contact pressure between core and shell.
- 2. Core and shell will have different temperatures.
- → different expansion → large forces on shape proposal: Introduce initial proposal: Introduce initial proposal propo

Possible production method

(*) Aluminium is used in the calculations. Material may have to change for reasons of radioactive waste disposal (see talk Luisa ULRICI, today at 12:00)

Cladding: Thermal equilibrium

Cylindrical target (R=26.5cm) with 5mm aluminium cladding

- > 3.4kW^(*) to be evacuated
- Assume adequate cooling
- > Results from thermal calculations:

- Temperature rise from lead to aluminium ~ 75K
- Estimated temperature rise of 130K between start-up and equilibrium → Target temperature reaches 150 °C which is acceptable (45% of lead melting temperature)
- Cylindrical shape better cooled and generally easier for production

(*)Load case = 5 pulses/16.8s supercycle

Design issues: Cooling

➤ Cooling → Target Assembly Geometry

Existing water flow not adapted to size of new target

Target is sufficiently cooled, but water temperature locally high

→ Need to redirect / concentrate / guide the water flow around the target

Optimized for cooling

Proposal: Filling part to help guide the water and increase local velocity

Water velocity around target:
Average: 0.02 m/s - Local: 0.1m/s

Filling part

Filling parts are efficient

- Filling parts: complex geometry, minimize mes
- Support structure to be adapted.
- Impact on target integration

Transient behaviour

Maximum target temperature vs. time → effect of each pulse and supercycle^(*)

Dynamic effect will cause shockwaves and cyclic stresses. (time-scale = msec)

Fatigue? Cracks? Lifetime?

(*)Load case = 7ns burst, 1.2s pulse, 5 pulses/16.8s supercycle ABOC Days 22-24/01/2007 Slide 10 of 14

Transient elasto-plastic behaviour

First results:

- Presence of plasticity
- Fatigue driven failure of the material will occur in central region (number of cycles to be determined).

Next steps:

Ans PARDONS

- Get detailed material properties (literature / experiment)
- Take into account the initial gap and the cladding materials. Fatigue analysis of both lead and cladding materials.

Design issues: Integration

- Supports and guiding system
 - Need for precise positioning (access!)
 - Limited space available
 - Integrate "filling parts"
 - Installation vertical + horizontal (moderator)

First ideas: remotely actuated sliding table, tubes for moderator

To do:

- Design
- Protety Ge

Ans PARDONS

ABOC Days 22-24/01/2007

Slide 12 of 14

Summary: Remaining design work

- Cladding & gap
 (define material, geometry, production method)
- Optimise cooling circuit (define geometry, link to target support)
- Simulate dynamic behaviour (perform material tests & calculations)
- Integration of components (define supports, guides)

Estimated Cost, Manpower & Time

- Cost target & supports: 240 kCHF
- Manpower

AB/ATB: 1.5 FTE - SC/RP: 0.5 FTE - TS/MME: ?

- Time for design (internal)
 - 4-6 months
- Time for target production (external)
 - 6 9 months