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Jets in the Medium

= Jet-medium interactions are expected to modify
the internal structure of the jet.
= How can we observe these effects
experimentally?
= Inclusive jet measurements
= Jet substructure measurements
= Jet shapes, correlations, etc

= Constrain and compare with models to gain
insight into the underlying physics.

Raymond Ehlers (Yale) - 19 March 2019 2



Inclusive Jet Spectra and Jet Suppression
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= Jet suppression often characterized via Raa. 1'4; B ALICE0-10%
= Stronger prje: dependence at low pr jet. 12? — gﬁg‘g‘"’_‘iglj“
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observables for multiple jet radii.
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Jet Substructure Measurements

= Explore splittings within the jet to characterize
its properties.
= |terative declustering provides the means to
access these splittings.

= Can select subset of splittings to isolate regions

of interest.

= Provide additional constraints on models by pri=(—-2)pr
requiring description of jet evolution.
= Take advantage of the precision of ALICE 0

tracking. Pr2 =ZDPr
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ALICE Jet Measurements

= Reconstructs jets at mid-rapidity
(Nl < 0.7) in pp, p~Pb, and Pb-Pb
collisions at /syy = 2.76 — 13 TeV

= Track-based jets utilize the high
precision tracking to use tracks with
PT track > 150 MeV/c.

= Full jets combine charged particle
information with electromagnetic
calorimeter clusters with
PT cluster > 300 MeV/c.

= Subtract charge particle
contamination from clusters to avoid
double counting.
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Inclusive Jet Measurements

= R=0.2, 0.4 full jets measured in pp and Pb—Pb collisions at \/syny = 5.02 TeV.
= prjer =40 — 140 GeV/c
= Full jets allow for direct comparison with theory.

= Require leading track bias to reduce combinatorial background.
= 5GeV/c for R=0.2.
= 7 GeV/c for R =0.4.

= Unfold Pb—Pb measurements for detector effects and background fluctuations using
embedded PYTHIA.
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pp Jet Cross-section

g ALICE Preliminary %‘ ALICE Preliminary
S . pp Vs =5.02 TeV S b =% pp Vs =5.02 TeV
o {03F =2 Anti-k;(R=0.2)|n |<0.5 o {103%E Anti-k;(R=0.4)|n |<0.3
S E lead,ch et S E lead,ch et
= F P> 5 GeVie = F =5 pr > 5 GeVie
Fe) r = Qa
.E. 1074 E \E. 1074 E &=
E =3 _ ==
[} F Q
= ==] = ==
o|o_ F == olo_ F
b AL - B E10CE 4o -
% F Correlated uncertainty —v—— -8‘ F Correlated uncertainty
o r Shape uncertainty s r Shape uncertainty =
10°F 4 POWHEG+PYTHIA 8 107§ POWHEG+PYTHIAS S=
F [ Scale uncertainty F [ Scale uncertainty
. B PDF uncertainty , [ PDF uncertainty
107 F PYTHIA 8 Monash 2013 107 F PYTHIA 8 Monash 2013
< b 1 L L L L 1 L L L < F L " " L 1 " L L " 1 L L L
E 1.4F —_— E 14F Fololoelolél 4L o | ¢ |
Sls 120 Fetadepee T R e
a8 1k B e s g 9_}—4—'—§—| I8 1F e s s
I X
038 08
5 "0 50 100 5 "0 50 100
Pt (GeV/c) P (GeV/c)

= PYTHIA overpredicts but POWHEG + PYTHIA is consistent with the data.
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Inclusive Jet Spectra
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= Measured in 0-10% Pb—Pb collisions between 40-140 GeV/c.
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ALICE Preliminary
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= Jet Raa is measured down to 40 GeV/c.
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= Suppression is similar for R =0.2 and R = 0.4.
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= Consistent with ATLAS R = 0.4 measurement.
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@ ALICE Preliminary
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Qualitatively, the Rapa is described by all models.

Quantitatively, there is slight tension between most models and the data.
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Groomed Jet Substructure

= Can provide further constraints by utilizing
grooming of jet substructure.

= |n pp, grooming retains the majority of
perturbative radiation while limiting QCD
backgrounds in a controlled manner.

= 7, is closely related to the Altarelli-Parisi
splitting functions

= In Pb—Pb, grooming can select hard
substructures within a jet, which are
expected to be under better theoretical

control
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SoftDrop

= Recluster the jet using Cambridge/Aachen
algorithm (geometric).

= Undo the last clustering step to get two
branches with pt 1 and pt

= Check whether the two branches pass the
SoftDrop condition:

min(pt.1, PT,2)
pT.1+ P12

AR12> B

> Zcuteﬁ = Zcut < Ro

= |f condition passed, use groomed jet.
= If condition failed, take the harder branch
cond |.on ared, o _e & narder ra'm(.: Default selections: (zet, B) = (0.1, 0)
and continue by undoing the next splitting
of that branch.
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Groomed Momentum Fraction in pp

. . . R=0.2
= Full jets measured in pp collisions at 7 —
N - - 1 1
o [ ALICE Preliminary, pp Vs= 13 TeV, Liy=11.5nb"-4 pb ]
\/SNN = 13 TeV. % Ami.kT
> 10[~ precs 015 GeV/e, B » 0.3 GeV
= R= 02' 03’ 0'4’ 0.5 5_ 77| < 0.7, [p?¥s* < 0.7, || < 0.7 - R

SoftDrop: z,,, = 0.1, =0

= prjet Measured from 30-200 GeV/c. 8
Selected pr jet bins of 30-40, 60-80,

_ 1  30GeVic< pTM <40 GeV/c

L 60GeVic< pne‘ <80 GeV/c

P I R

6;
160-180 GeV/c are shown here. [ — T 160GeVic<p, <180GeV/c ]|
"z =0.1 B =0 4 —— PYTHIA Perugia 2011 _]
cut — ocop - . L i
= No underlying event subtraction is of ]
applied. r . e
0o g q o = § ' i ' [ =
= For small radii jets, low pt jets trend = ig; ' g
gl 3
towards more symmetric splittings, s ;j ﬂ_:taﬁ_kzg:%kﬁ}b
while higher pt jets trend towards 08 - :
more asymmetric splittings. 05— 052’9
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Groomed Momentum Fraction vs R
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* prjet dependence is only for small radii.
= PYTHIA is in good agreement with the data.
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Groomed Momentum Fraction vs pr je;
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Groomed Momentum Fraction vs pr je;
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= Jet radii dependence disappears at high pr jer Where jets are dominated by jet core.

= Data is well described by PYTHIA.
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Groomed Jet Substructure in Pb—Pb

= Medium recoil is expected to promote

soft branches above the threshold. 09 ] 1O e TGE Bratminary TS

= R =0.4 track-based jets measured in |_ o8t 1. 102; 5;’7‘2"‘{523“4 _
Pb—Pb collisions at \/syy = 2.76 TeV. |2~ 27 =T

* prjet =80 — 120 GeV/c 1D, O e S TiAEmbedes

» Pb—Pb data measured at detector level. |£2 g; ] 3'2 1_ _'_—~—=.=____
= Compared to PYTHIA reference < 0.2 EE _’_
embedded in Pb—Pb. ot . e - . et

O O E E

= Normalization by number of measured % ; ; % ‘51: P I ‘
jets enables evaluation of absolute = . = 020‘ T
differences between data and reference. unselected R AR

Suppression at large zg.
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Angular Dependence

AR<0.1 AR > 0.2
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= Unselected jets includes those which failed the SoftDrop condition, as well as those

cut by the AR selection.
= Slight enhancement of collinear splittings, and suppression of large angle splitting.
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Recursive Soft

= Can medium induced radiation be detected
i . . S
as extra splittings in the jet tree? - "ALICE Preliminary ]
= Explore via recursively applying SoftDrop. 050 i:ﬁi}sg‘g;gze';?;:\;:mt 1
[a) = 80 <p" <120 GeVie 1
<& r SOftDIOp 2, = 0.15 =0 1
S o4 5 3
S C -e-Data ]
= o = Shape Uncertainty ]
T 03  =PYTHIA Embedded -
%) - -
2_§ C .+ —a— ]
02 = e, =
- E A = 3
0.1 L W =
C . -
.~
O ;. I | | | | #=:
= 1.5 _
s 1E —
8 056 e
R R T R A A
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Recursive SoftDrop

= Can medium induced radiation be detected
- . . ) —
as extra splittings in the jet tree? - "ALICE Preliminary ]
= Explore via recursively applying SoftDrop. 050 Z:;’,im;;j?;:iho"t 1
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Recursive SoftDrop

= Can medium induced radiation be detected
as extra splittings in the jet tree? 0.6 ALICE Preliminary |
= Explore via recursively applying SoftDrop. 050 mon e -0 3
[a) = 80 <p" <120 GeVie 1
<& r SOftDIOp 2, = 0.15 =0 1
o 04 D =
o r -e-Data b
= 1 X = 5 2= Shape Uncertainty ]
2 T 03  =PYTHIA Embedded -
[2] = -
\/ o, C .+ —a— ]
Z 02 == -
v < : = ]
= nsp is the number of splittings that pass 01— . =
" . . - ol ., ]
the SD condition during Recursive SD. e -
oy ] | l Il Il ‘
= Consistent with reference for ngp > 1. LEJ o 3
» Enhanced number of untagged jets. 3 E
= Different from expectations for S o5 E
correlation medium response. R T R S S S
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Lund Diagram

log z0
= Enables exploration of the 1 — 2
splitting phase space.
= Can vary z.y and (3 to select different
regions of the phase space.
log1/60
Large angles Small angles
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Lund Diagram
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Lund Diagram

log z0
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Lund Diagram

log z0
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Conclusions

= Inclusive full jet spectra were measured in pp and Pb—Pb collisions at |/syn = 5.02
TeV.

= Jet Raa was measured down to 40 GeV/c, showing significant suppression for
R = 0.2 and 0.4 jets, with a weak increase of the suppression with decreasing pr
for R =0.2 jets.

= 7, was measured in pp collisions at /s = 13 TeV, showing no jet pt dependence
except at the lowest pr jet.

= Momentum sharing of two-prong jet substructure exposed via grooming (zg) was
measured in Pb—Pb collisions at /sxy = 2.76 TeV, showing suppression of
symmetric splittings.

= High statistics Pb—Pb data collected in 2018 will enable more precise measurements.

Stay tuned!
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ALICE - A Large lon Collider Experiment

THE ALICE DETECTOR

a. TS SPD (Pixel)
b. ITS SDD (Drift)
c. ITS SSD (Strip)
d. Voand T0

e. FMD

@0 Calorimetry:

7 EMCal: Il < 0.7, |Ag| < 107°
5. TOF 3 (D]

: s = DCal: 0.22 < In| < 0.7, |Ag| < 60°

i

Remove charged

14, Muon Trigger
15. Dipole Magnet
16, PMD

17.AD

19. ACORDE

particle contamination

L i

Tracking: o 4 Neutral
Il < 0.9,0 < ¢ < 2 arge Full Jet eutre
TPC ITS constituents constituents
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