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Jets in the Medium

• Jet-medium interactions are expected to modify
the internal structure of the jet.

• How can we observe these effects
experimentally?

• Inclusive jet measurements
• Jet substructure measurements
• Jet shapes, correlations, etc

• Constrain and compare with models to gain
insight into the underlying physics.
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Inclusive Jet Spectra and Jet Suppression
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• Jet suppression often characterized via RAA.
• Stronger pT,jet dependence at low pT,jet.

• In both pp and Pb–Pb, how well do the models
describe the data?

• Can measurements help differentiate between
different models?

• ALICE can measure down to lower pT,jet than
other LHC experiments.

• Can provide additional constraints by measuring
observables for multiple jet radii.
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Jet Substructure Measurements

• Explore splittings within the jet to characterize
its properties.

• Iterative declustering provides the means to
access these splittings.

• Can select subset of splittings to isolate regions
of interest.

• Provide additional constraints on models by
requiring description of jet evolution.

• Take advantage of the precision of ALICE
tracking.
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ALICE Jet Measurements

• Reconstructs jets at mid-rapidity
(|η| < 0.7) in pp, p–Pb, and Pb–Pb
collisions at √sNN = 2.76− 13 TeV

• Track-based jets utilize the high
precision tracking to use tracks with
pT,track > 150 MeV/c.

• Full jets combine charged particle
information with electromagnetic
calorimeter clusters with
pT,cluster > 300 MeV/c.

• Subtract charge particle
contamination from clusters to avoid
double counting.

1
2

14

1718

18
17

13

3

4
5

8 9

1212
12

1211

15

16

6

7

10

19THE ALICE DETECTOR

ITS
FMD, T0, V0
TPC
TRD
TOF
HMPID
EMCal
DCal
PHOS, CPV
L3 Magnet
Absorber
Muon Tracker
Muon Wall
Muon Trigger
Dipole Magnet
PMD
AD
ZDC
ACORDE

ITS SPD (Pixel)
ITS SDD (Drift)
ITS SSD (Strip)
V0 and T0
FMD

a.
b.
c.
d.
e.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14,
15.
16,
17.
18.
19.

Raymond Ehlers (Yale) - 19 March 2019 5



Inclusive Jet Measurements

• R = 0.2, 0.4 full jets measured in pp and Pb–Pb collisions at √sNN = 5.02 TeV.
• pT,jet = 40− 140 GeV/c

• Full jets allow for direct comparison with theory.
• Require leading track bias to reduce combinatorial background.

• 5 GeV/c for R = 0.2.
• 7 GeV/c for R = 0.4.

• Unfold Pb–Pb measurements for detector effects and background fluctuations using
embedded PYTHIA.
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pp Jet Cross-section

• PYTHIA overpredicts but POWHEG + PYTHIA is consistent with the data.
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Inclusive Jet Spectra

• Measured in 0-10% Pb–Pb collisions between 40-140 GeV/c.
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Jet RAA

• Jet RAA is measured down to 40 GeV/c.
• Suppression is similar for R = 0.2 and R = 0.4.
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Jet RAA
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• Consistent with ATLAS R = 0.4 measurement.
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Jet RAA

• Qualitatively, the RAA is described by all models.
• Quantitatively, there is slight tension between most models and the data.
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Groomed Jet Substructure

• Can provide further constraints by utilizing
grooming of jet substructure.

• In pp, grooming retains the majority of
perturbative radiation while limiting QCD
backgrounds in a controlled manner.

• zg is closely related to the Altarelli-Parisi
splitting functions

• In Pb–Pb, grooming can select hard
substructures within a jet, which are
expected to be under better theoretical
control
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SoftDrop

• Recluster the jet using Cambridge/Aachen
algorithm (geometric).

• Undo the last clustering step to get two
branches with pT,1 and pT,2

• Check whether the two branches pass the
SoftDrop condition:

min(pT,1, pT,2)

pT,1 + pT,2
> zcutθ

β = zcut

(
∆R12
R0

)β

• If condition passed, use groomed jet.
• If condition failed, take the harder branch

and continue by undoing the next splitting
of that branch.

Default selections: (zcut, β) = (0.1, 0)
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Groomed Momentum Fraction in pp

• Full jets measured in pp collisions at
√sNN = 13 TeV.

• R = 0.2, 0.3, 0.4, 0.5
• pT,jet measured from 30-200 GeV/c.

Selected pT,jet bins of 30-40, 60-80,
160-180 GeV/c are shown here.

• zcut = 0.1, β = 0.
• No underlying event subtraction is

applied.
• For small radii jets, low pT jets trend

towards more symmetric splittings,
while higher pT jets trend towards
more asymmetric splittings.

R = 0.2
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Groomed Momentum Fraction vs R

R = 0.2 R = 0.3 R = 0.4 R = 0.5

• pT,jet dependence is only for small radii.
• PYTHIA is in good agreement with the data.
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Groomed Momentum Fraction vs pT,jet

• A trend: more asymmetric splittings for
larger radius jets at low pT

• Larger jets at low pT capture more
soft radiation

• Different radii have sensitivity to
non-perturbative effects

• PYTHIA can reproduce this trend at
low pT,jet

30 < pT,jet < 40

Raymond Ehlers (Yale) - 19 March 2019 16



Groomed Momentum Fraction vs pT,jet

30 < pT,jet < 40 60 < pT,jet < 80 160 < pT,jet < 180

• Jet radii dependence disappears at high pT,jet where jets are dominated by jet core.
• Data is well described by PYTHIA.
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Groomed Jet Substructure in Pb–Pb

• Medium recoil is expected to promote
soft branches above the threshold.

• R = 0.4 track-based jets measured in
Pb–Pb collisions at √sNN = 2.76 TeV.

• pT,jet = 80− 120 GeV/c
• Pb–Pb data measured at detector level.

• Compared to PYTHIA reference
embedded in Pb–Pb.

• Normalization by number of measured
jets enables evaluation of absolute
differences between data and reference.

• Suppression at large zg.
ALI-PREL-148221
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Angular Dependence

∆R < 0.1

ALI-PREL-148233

∆R > 0.2

ALI-PREL-148229

• Unselected jets includes those which failed the SoftDrop condition, as well as those
cut by the ∆R selection.

• Slight enhancement of collinear splittings, and suppression of large angle splitting.
Sensitivity to color coherence? (JHEP 04 (2017) 125)Raymond Ehlers (Yale) - 19 March 2019 19



Recursive SoftDrop

• Can medium induced radiation be detected
as extra splittings in the jet tree?

• Explore via recursively applying SoftDrop.
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Recursive SoftDrop

• Can medium induced radiation be detected
as extra splittings in the jet tree?

• Explore via recursively applying SoftDrop.

x
X
1

X
2
x

• nSD is the number of splittings that pass
the SD condition during Recursive SD.

• Consistent with reference for nSD > 1.
• Enhanced number of untagged jets.

• Different from expectations for
correlation medium response.
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Lund Diagram

• Enables exploration of the 1→ 2
splitting phase space.

• Can vary zcut and β to select different
regions of the phase space.

log 1/θ

log zθ

Large angles Small angles
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Lund Diagram
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Lund Diagram

• Enables exploration of the 1→ 2
splitting phase space.

• Can vary zcut and β to select different
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Lund Diagram
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Lund Diagram

• Enables exploration of the 1→ 2
splitting phase space.

• Can vary zcut and β to select different
regions of the phase space.

• Large angular separation splittings are
expected to be resolved by the medium,
resulting in suppression relative to pp.
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Lund Diagram

• Enables exploration of the 1→ 2
splitting phase space.
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Lund Diagram

• Enables exploration of the 1→ 2
splitting phase space.

• Can vary zcut and β to select different
regions of the phase space.

• Large angular separation splittings are
expected to be resolved by the medium,
resulting in suppression relative to pp.
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Lund Diagram

• Hint of suppression of large angle
splittings.

• Consistent with zg measurements.
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Conclusions

• Inclusive full jet spectra were measured in pp and Pb–Pb collisions at √sNN = 5.02
TeV.

• Jet RAA was measured down to 40 GeV/c, showing significant suppression for
R = 0.2 and 0.4 jets, with a weak increase of the suppression with decreasing pT
for R = 0.2 jets.

• zg was measured in pp collisions at
√

s = 13 TeV, showing no jet pT dependence
except at the lowest pT,jet.

• Momentum sharing of two-prong jet substructure exposed via grooming (zg) was
measured in Pb–Pb collisions at √sNN = 2.76 TeV, showing suppression of
symmetric splittings.

• High statistics Pb–Pb data collected in 2018 will enable more precise measurements.
Stay tuned!
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Backup
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ALICE - A Large Ion Collider Experiment
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Calorimetry:
EMCal: |η| < 0.7, |∆ϕ| < 107°

DCal: 0.22 < |η| < 0.7, |∆ϕ| < 60°

Remove charged
particle contamination

Neutral
constituents

Full Jet
Charged

constituents

Tracking:
|η| < 0.9, 0 < ϕ < 2π

TPC, ITS
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