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Jets are everywhere

CMS CMS Experiment at the LHC, CERN
Data recorded: 2015-Sep-28 06:09:43.129280 GMT
Run / Event / LS: 257645 / 1610868539 / 1073




Why do we care about jets?

= Jets are inherently interesting
=  They are emergent phenomena and can teach us about QFT

= Extract fundamental QCD parameters, constrain PDFs
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= Probing the properties of the hot and dense medium
jet




Theory: jet substructure in p+p and A+A

= Studying jet substructure in QCD is generally a complicated
problem, due to its multi-scale nature

= Fixed-order computation usually fails
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= Modern effective field theory (e.g., SCET) is here to rescue
Q(1,1,1)

= Hard mode

=  Collinear mode pt ~ Q

= Soft mode ~ ()\, A, )\)
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Poor theorist review: status

= P+P: a lot of work are still needed to develop the theory formalism
for jet substructure

= A+A: the interaction between collinear modes (jet) and the
medium is captured by Glauber gluons ¢~ (A%, A%, )

=  How soft modes coupled to the medium is not explored yet

= |n general soft background is much more complicated in heavy ion
environment, which could obscure the comparison between p+p and A+A

= |nitial strategy??
=  Try to reduce sensitivity to soft modes: soft drop grooming

= Try to rely on collinear physics, e.g., using winner-take-all jet axis (instead of
standard jet axis)




A unified framework for jet and hadron production
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What are these jet functions?

= They are usually referred to as “semi-inclusive jet function”
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= They follow DGLAP evolution equation

= All jet substructures are contained in these functions
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Ln(R) resummation

= Natural scale for jet functions: pt*R f p~ pr

= Jet radius resummation: (a,InR)" wy~pr xR

Kang, Ringer, Vitev, 1606.06732
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Effect of In(R) resummation

= The In(R) is the main source for the discrepancy:
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= Threshold resummation further improve the agreement
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Jet fragmentation function

= First produce a jet, and then further look for a hadron inside the

jet
do" do
Flon2r) = G orden | Sy
2n = Pl /pr
z = pr/PT
Sl Kang, Ringer, Vitev, JHEP 2016

= Just like the single inclusive jet production, we have
= Semi-inclusive fragmenting jet function




Semi-inclusive fragmenting jet function

" One needs a more complicated jet function

h Kang, Ringer, Vitev, 1606.07063, JHEP 16
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Some interesting phenomenology

= Works pretty well in comparison with experimental data
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Evolution structure for jet substructure

= Jet substructure: two-layer QCD factorization
= Producing the jet

= Concentrating on the internal substructure T
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Measuring mass of a jet

= Jet mass for single inclusive jet production: pp — jet + X
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= Quark-gluon discrimination
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= Tagging of boosted objects
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Factorization formalism

= Standard (ungroomed) jet mass distribution
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= Comparison with jet mass measurements at the LHC
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= Non-perturbative effect is modeled by a single parameter shape
function Stewart, Tackmann, Waalewijn, 15




Non-perturbative effect

= Non-perturbative contribution mainly from soft momentum k

m%,tot = Z(pjet +k)? = pj2et + 2Pjet - k + O(k?)
Pjet ~~ pTR

shift in jet mass ~ 2pr RE

do doPert R
= | dkF,.(k — —k
dndprdr / ( )dndedT (T DT )
F. (k) = (é—ﬁ) exp (—?z—k> Stewart, Tackmann, Waalewijn, 15

= Higher pT jet leads to a bigger shift in mass




Very large non-perturbative contribution

What are the sources of non-perturbative physics?
= Underlying event (multi parton interactions)

= Pile up

=  Hadronization effect: parton to hadron




Likely: MPI is suppressed for small radius jets

= Non-perturbative parameter: Q =3.5GeV
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Reduce soft sensitivity

= Underlying Events are difficult to understand, maybe try to get rid
of them somehow to our observables

Hint : contamination generally from soft radiations.

Groom jets to reduce sensitivity to wide-angle soft ray

Hadrons




Soft drop grooming

INA

b=z Figure from lan Moult’s slide from UCLA Nov, 2017

* Soft drop grooming algorithms:

1. Reorder emissions in the identified jet according to their
relative angle using C/A jet algorithm.

2. Recursively remove soft branches until soft drop condition is met:
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= C/A jet: branches with smallest angle are clustered first
= Clustering from right to left

= Soft drop: check the soft drop condition from largest angle first
clustering from left to right




What does soft drop grooming do?

If treated z.,; as a soft scale, the large angle soft radiation will fail
the soft drop condition
=  Thus soft drop grooming removes “wide/large angle soft radiation”

Soft drop grooming

= Does not affect “small angle soft radiation” (collinear soft modes)

= Does not affect “small angle collinear radiation” inside the jet (collinear modes)
= Does not affect anything outside the jet

ungroomed




Factorization formalism

= Groomed jet mass distribution
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Comparison with data

Non-perturbative parameter: = 1GeV

Non-pertubative contribution is much reduced: only hadronization
effect
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Much reduced sensitivity of MP|

= Jets with different R: still same non-perturbative parameter
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Groomed jet characteristics

= To characterize the groomed jet

= Momentum sharing -
. = min(pr1, pr2)
! pr1+ P12

= Angular separation: groomed jet radius i -

Ry = /(An12)? + (Agr2)?

= Factorization for Rg distribution
=  Realizing Rg is the largest angular separation for groomed jet

= Derive a factorization for cumulative distribution (any value below Rg
contributes)

=  The distribution differential in Rg can be obtained through
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Preliminary prediction at the LHC

= Compared with Pythia
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Comparison with STAR data

Preliminary comparison with STAR data (see Raghav’s talk)

= Very promising
Smaller jet pT, thus larger uncertainty from scale variations
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Purely perturbative results (above), still testing non-perturbative

contributions
For STAR, smaller jet pT, thus larger non-perturbative contributions




= A unified factorization formalism for study inclusive jets and jet
substructure is introduced, through so-called semi-inclusive jet
functions
= Precision phenomenology using resummation
= Jet substructure calculations from first principles

= (un)groomed jet observables: jet fragmentation function, jet mass, groomed
radius

= The exciting time for jet substructure physics is just starting




A unified factorization formalism for study inclusive jets and jet
substructure is introduced, through so-called semi-inclusive jet
functions

= Precision phenomenology using resummation

= Jet substructure calculations from first principles

= (un)groomed jet observables: jet fragmentation function, jet mass, groomed
radius

The exciting time for jet substructure physics is just starting

Thank you!




