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Jets are abundantly produced in both p+p and A+A

§ Jets are everywhere
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Why do we care about jets?

§ Jets are inherently interesting
§ They are emergent phenomena and can teach us about QFT

§ Extract fundamental QCD parameters, constrain PDFs

§ Probing the properties of the hot and dense medium
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Theory: jet substructure in p+p and A+A

§ Studying jet substructure in QCD is generally a complicated 
problem, due to its multi-scale nature
§ Fixed-order computation usually fails

§ Modern effective field theory (e.g., SCET) is here to rescue
§ Hard mode

§ Collinear mode

§ Soft mode
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Poor theorist review: status

§ P+P: a lot of work are still needed to develop the theory formalism 
for jet substructure

§ A+A: the interaction between collinear modes (jet) and the 
medium is captured by Glauber gluons
§ How soft modes coupled to the medium is not explored yet

§ In general soft background is much more complicated in heavy ion
environment, which could obscure the comparison between p+p and A+A

§ Initial strategy??
§ Try to reduce sensitivity to soft modes: soft drop grooming

§ Try to rely on collinear physics, e.g., using winner-take-all jet axis (instead of 
standard jet axis)

5

R! { , , }i Ti i iEα η φ=

q ⇠ (�2,�2,�)



A unified framework for jet and hadron production
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ü Same hard functions, telling us the quark
and gluon jet ratios order by order in pQCD

Kang, Ringer, Vitev, 1606.06732, 1606.07063, Dai, Kim, Leibovich, 
1606.07411, see also, Kaufmann, Mukherjee, Vogelsang, 1506.01415



What are these jet functions?

§ They are usually referred to as “semi-inclusive jet function”

§ They follow DGLAP evolution equation
§ All jet substructures are contained in these functions
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Ln(R) resummation

§ Natural scale for jet functions: pT*R

§ Jet radius resummation:  
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Effect of ln(R) resummation

§ The ln(R) is the main source for the discrepancy: 

§ Threshold resummation further improve the agreement
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Jet fragmentation function

§ First produce a jet, and then further look for a hadron inside the 
jet

§ Just like the single inclusive jet production, we have
§ Semi-inclusive fragmenting jet function
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Semi-inclusive fragmenting jet function

§ One needs a more complicated jet function

§ Two DGLAPs:
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Some interesting phenomenology

§ Works pretty well in comparison with experimental data
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Evolution structure for jet substructure

§ Jet substructure: two-layer QCD factorization
§ Producing the jet

§ Concentrating on the internal substructure
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Measuring mass of a jet

§ Jet mass for single inclusive jet production: 

§ Quark-gluon discrimination

§ Tagging of boosted objects
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Factorization formalism

§ Standard (ungroomed) jet mass distribution
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Jet mass

§ Comparison with jet mass measurements at the LHC

§ Non-perturbative effect is modeled by a single parameter shape 
function
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Non-perturbative effect 

§ Non-perturbative contribution mainly from soft momentum k

§ Higher pT jet leads to a bigger shift in mass
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Very large non-perturbative contribution

§ What are the sources of non-perturbative physics?
§ Underlying event (multi parton interactions)

§ Pile up

§ Hadronization effect: parton to hadron
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Likely: MPI is suppressed for small radius jets

§ Non-perturbative parameter: 
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Reduce soft sensitivity

§ Underlying Events are difficult to understand, maybe try to get rid 
of them somehow to our observables
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Soft drop grooming

§ C/A jet: branches with smallest angle are clustered first
§ Clustering from right to left

§ Soft drop: check the soft drop condition from largest angle first
§ Declustering from left to right
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What does soft drop grooming do?

§ If treated zcut as a soft scale, the large angle soft radiation will fail 
the soft drop condition
§ Thus soft drop grooming removes “wide/large angle soft radiation”

§ Soft drop grooming 
§ Does not affect “small angle soft radiation” (collinear soft modes)

§ Does not affect “small angle collinear radiation” inside the jet (collinear modes)

§ Does not affect anything outside the jet

22

ungroomed groomed



Factorization formalism

§ Groomed jet mass distribution
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Comparison with data

§ Non-perturbative parameter:

§ Non-pertubative contribution is much reduced: only hadronization 
effect
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Much reduced sensitivity of MPI

§ Jets with different R: still same non-perturbative parameter
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Groomed jet characteristics

§ To characterize the groomed jet
§ Momentum sharing

§ Angular separation: groomed jet radius

§ Factorization for Rg distribution
§ Realizing Rg is the largest angular separation for groomed jet

§ Derive a factorization for cumulative distribution (any value below Rg
contributes)

§ The distribution differential in Rg can be obtained through 
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Preliminary prediction at the LHC

§ Compared with Pythia
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Comparison with STAR data

§ Preliminary comparison with STAR data (see Raghav’s talk)
§ Very promising

§ Smaller jet pT, thus larger uncertainty from scale variations

§ Purely perturbative results (above), still testing non-perturbative 
contributions
§ For STAR, smaller jet pT, thus larger non-perturbative contributions
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Summary

§ A unified factorization formalism for study inclusive jets and jet 
substructure is introduced, through so-called semi-inclusive jet 
functions
§ Precision phenomenology using resummation

§ Jet substructure calculations from first principles

§ (un)groomed jet observables: jet fragmentation function, jet mass, groomed 
radius

§ The exciting time for jet substructure physics is just starting
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