Generator-level studies for Z/photon-tagged jet measurements and effects of angular resolution driven by HI background

Kaya Tatar Massachusetts Institute of Technology

March 20, 2019

13th International Workshop on High-pT Physics in the RHIC/LHC era, University of Tennessee, Knoxville, USA March 20, 2019

γ -tagged jets at LHC

γ +jet Production

γ +jet in Pythia 8

Kaya Tatar

Mapping γ +jet to PDF

γ +gluon

PDF vs x explored in photon+jet events

Mapping γ +jet to PDF – large Q

High momentum transfer - > large x Gluon PDF falls faster with x ==> Gluon initiated processes decrease ==> **Quark jet fraction decreases** pp, $\sqrt{s} = 5.02 \text{ TeV}$ 1.4 Pythia 8.2 heavy quark light guark 1.2 γ + jet gluon **Event Fraction** 0.8 0.6 0.4 0.2 0 100 200 300 400 500 600 700 800 900 1000 p_{τ}^{γ} (GeV/c)

q/g fraction – γ +jet at LHC vs RHIC

Almost no heavy quark events Rapid decrease in quark fraction after $p_{\tau} \sim 50$ GeV sPHENIX not expected to go beyond that p_{τ} See HP2018 talk

Map to PDF – γ +jet at LHC vs RHIC

B/c phase space is squeezed into high x

Bulk observables

Shape of momentum imbalance

2

2

Shape of angular correlation

Processes in the evolution of hard scattering Multiparton interactions (MPI) Initial-state radiation (ISR) Final-state radiation (FSR)

Turn off these processes one by one. Their absence reveals the impact on the observable. z_{e}^{\ge}

ISR is the process that widens azimuthal angle correlation.

Shape of angular correlation at RHIC

Hard parton radiates to large angles

Hard – > parton produced at hard scattering Final – > daughters of "hard" partons right before hadronization

Kaya Tatar

Radiation to large angles – LHC vs RHIC

Final – > daughters of "hard" partons right before hadronization

Kaya Tatar

Substructure

Fragmentation function and jet shape

Kaya Tatar

FF vs JS – Sensitivity to Hadronization

FF more sensitive to hadronization

Illii

March 20, 2019

Kaya Tatar

Z+jet

Z is massive – > Wider p_{τ} spectrum

March 20, 2019

Miī

Z+jet vs γ +jet: FF and JS

Isolated photon+jet

represents the experiment sample better more similar to **Z+jet** than **prompt photon** All three similar

Substructure in Heavy Ion Background

We ~know how to correct/subtract some things e.g. energy, multiplicity Generally --> scalar quantities – > along 1D, direction of change is known

Background subtraction for charged particles

isolated-photon+jet event

PRL 121, 242301 (2018)

Substructure in Heavy Ion Background

We ~know how to correct/subtract some things e.g. energy, multiplicity Generally --> scalar quantities – > along 1D, direction of change is known

> What about vector quantities ? e.g. direction in 2D plane Might estimate the **magnitude** of the change But what about **direction** ?

Creating a toy Underlying Event

- 1. Sample toy particles from PbPb Hydjet
- 2. Shoot them into Pythia event
- 3. Cluster jets using all (Pythia+toy) particles
 - Correct jet energy by subtracting energy of toy particles > JES/JER factored out
- 4. Construct observables using Pythia particles only

FF and JS in toy UE

FF and JS in toy UE – high p_{τ}

Illii

Particles from UE and jet axis

- High p_T particles from UE pull the jet axis during clustering
- Different shape than with particles from mixed event
- What is distorted here is the jet axis, a vector
 - Direction of change ambiguous
- Correlated with the position of particles
 - Not reproduced by random smearing
- Need to redefine jet angle ?

WTA recombination scheme - JS

• Standard jet axis determined via E-scheme

- sum of 4-vec

- Winner-Take-All recombination scheme
 - In particular WTA-pt-scheme
 - Recombination p_r of p_i and p_i where

$$p_{t,r} = p_{t,i} + p_{t,j},$$

$$\phi_r = (w_i \phi_i + w_j \phi_j) / (w_i + w_j),$$

$$y_r = (w_i y_i + w_j y_j) / (w_i + w_j),$$

$$w_i = p_t^n \qquad n \to \infty$$

Ref. FastJet v3.2.2 Doc

The new axis coincides with that of the harder component

WTA recombination scheme - FF

• Standard jet axis determined via E-scheme

- sum of 4-vec

- Winner-Take-All recombination scheme
 - In particular WTA-pt-scheme
 - Recombination p_r of p_i and p_i where

$$p_{t,r} = p_{t,i} + p_{t,j},$$

$$\phi_r = (w_i \phi_i + w_j \phi_j) / (w_i + w_j),$$

$$y_r = (w_i y_i + w_j y_j) / (w_i + w_j),$$

$$w_i = p_t^n \qquad n \to \infty$$

Ref. FastJet v3.2

== >

The new axis coincides with that of the harder component

FF and JS in toy UE – use WTA scheme

Kaya Tatar

Angular correlation in toy UE - LHC

Kaya Tatar

Angular correlation in toy UE - RHIC

Sharper angular correlation at RHIC – > more sensitive to resolution

Kaya Tatar

Summary

- Photon+jet production mechanism
 - Evolution of Q/G fractions can be understood via PDF
- Processes in the evolution of hard scatterers
 - Smear initial correlations, set the shape of bulk observables
 - ISR -> large effect for angular correlation, smaller at RHIC than at LHC
- Comparison of FF and JS observables
- Background effects
 - Harder to undo if **direction** is not known and things happen in a correlated way
 - Studied effects using gen-level Pythia and toy PbPb
 - UE particles pull jet axis.
 - One way to overcome > change axis definition to WTA.
 - Reduces resolution effects for JS
 - Can be useful also for angular correlation

Acknowledgements : The MIT group's work was supported by US DOE-NP.

BACKUP

q/g fraction – γ +jet vs Z+jet

Mapping γ +jet to PDF – split q vs g

Hard scattering evolution

CTEQ/MCnet School, Talk by T. Sjöstrand

Kaya Tatar

Shape of momentum imbalance - RHIC

Processes in the evolution of hard scattering Multiparton interactions (MPI) Initial-state radiation (ISR) Final-state radiation (FSR)

Turn off these processes one by one. Their absence reveals the impact on the observable.

Left (Right) tail from FSR (ISR)

Size of background

PRL 121, 242301 (2018)

Kaya Tatar

FF and JS in toy UE – high p_{τ}

Kaya Tatar

Angular correlation in toy UE – LHC – low p_{τ}

Kaya Tatar

Prompt vs isolated γ +jet

q/g fraction – isolated γ +jet

PRL 121, 242301 (2018)

High and low p_{T}

Kaya Tatar

MPI, ISR, FSR effects

Kaya Tatar