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0 Designing a new partonic transport approach: motivation

=] F = = DAy
Weiyao Ke Transport approach & application



Transport model approach to hard probes in QGP

@ Advantages:

> Particle-based simulation.
» Easy to be coupled to a hydrodynamic background.

@ Challenges:

» Testing the underlying assumptions.
» Range of validity of semi-classical approach.
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Assumption of probe-medium interaction:

o Relatively dilute & perturbative scattering centers?
@ Many soft scatterings — diffusion.

@ Non-perturbative contribution, are they modeled by diffusion?

The assumption affects the extraction of the transport parameter from experiments
p =10 [GeV] T=0.35[GeV]

[ Linear. Boltzmann . . . N
Improved Langevin Large model uncertainty in extracting §!

o Linearized Boltzmann: perturbative el
& inel scatterings.

5 F @ Improved Langevin: diffusive

propagation & radiation.
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How to include the LPM effect in a transport simulation?

o Interference between multiple scatters changes the branching spectrum.
o Different transport models implement the LPM effect quite differently.

@ How much uncertainty does it introduce? Can we calibrate it to theoretical calculations in
certain limits?
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© Recent efforts in transport modeling: the LIDO model
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Goals

@ Let model take more flexible form of probe-medium interaction
— a combination of diffusion at small angle and large angle scatterings.

@ Revisit the medium-induced radiation implementation
— modifying the semi-classical particle-based transport scheme.
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Probe-medium interaction: a separation between hard and soft modes

Small-Q diffusion D[f]  Diffusion-induced Large-Q elastic Large-Q inelastic
radiation C12[f] collision C%72[f] collision C%*3[f]
@ @ W
df 12 2452 243
E:D[f]—i-c [f] + C=7<[f] + C7°[f]
LIDO provides a particle based Monte-Carlo solver of the transport equation (Q, g, g):
A)_()/At == ﬁ/E - — N N
D: _ oo 5 (8(0)8(0)) = 6(2)(Prgs.. + Prds/2)
{Ap/At = —npp + &(t)
At - dR
C: Sample pi, po, - -+ according to ——————
dpfdpg .
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Probe-medium interaction: a separation between hard and soft modes

Small-Q by diffusion D(Q < Qeut)
@ Do not resolve details of medium.
e Transport coefficients from weakly-coupled theory (J Ghiglieri et al JHEP 03 095)
Gs — /qut d?q Cg ngsz PO
o (@m)F gl +mp T

@ Can also model certain non-perturbative effect by parametric Aq.

Large-Q by scatterings C(Q > Qcut)
@ Medium participates as quasi-particles.

@ Few body scattering rates:
1

== d[PS]fo(p2)IMI3 5 sc.d...
2E1 Ji> 2,

Weiyao Ke Transport approach & application Mar 21, 2019, Knoxville 9/23



Approximating the LPM effect in a semi-classical approach

o The medium-induced gluon radiation: coherent over t; — tp ~ ¢, A = m2D/€7

dP > P(x) /°° /°° iqL-pL . _
-— = g — dty dtzfﬁe/ ~F= C()K(t2, 41 t1, pL
dx ™ Jo t q1.pL SE(qL) (=K )

F(t2;t1), path-dependent

/

S Caron-Huot and C Gale, PRC 82 064902
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Approximating the LPM effect in a semi-classical approach

o The medium-induced gluon radiation: coherent over t; — tp ~ ¢, A = m2D/€7

dP 0 P(x) « [*
= / dty g2& )\/ dtzF(tQ; tl)
0 AT t
——

dx 1

Incoherent rate

@ Boltzmann/rate Eq: df /dt = R(t), single time variable (needs fundamental change).
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Approximating the LPM effect in a semi-classical approach

@ The medium-induced gluon radiation: coherent over t; — ty ~ 77, A= m2D/€7

dP 00 P(x) - [
= / dt, g2¥ A/ dt, F(t2; t1)
O t H,—/

dx T 1

L P(r6)d(ta—t1—7¢)

Proxy ansatz Z,rf =

Incoherent rate

e Boltzmann/rate Eq: df /dt = R(t), single time variable (needs fundamental change).
@ An ansatz for test particles:

(a) stochastic process samples from the distribution P(7¢) for a splitting.
(b) Meanwhile, system is propagated to t + 7. Incoherently generated processes rejected by,

dP _ [*  dRincoh bA
o~ / dt;——(t1) X — —— Probabilistic rejection at tp = t; + 7¢
dx 0 dw Tf

Ke, Xu, and Bass, arXiv:1810.08177
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Approximating the LPM effect in a semi-classical approach

Self-consistent determing 7
Zapp et al JHEP 07, 118 (2011)

) Transport:
incoh
[Sample ar ]—> coll, diff
Implement LPM suppression
0.6
05 Diffusion
0.4+ — Diffusion 10° |
= 0s4 +Large-Q Scattering
T 3
3
0.2 4 E’.‘
S
0.1 1071
0.0 T T T T
o 1 2 3 4 5
TV 2w/do 107 ‘ ‘ :
1072 1071 10°
w

Ke, Xu, and Bass, arXiv:1810.08177
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“Calibrate” this approach in the deep-LPM region

@ The determined formation time has an logarithmic-Qg ambiguity

-1 g'T3 Qg 2 10 12 2 2 /.2
(1)) o< V/§/w ox In (1 + —2) q1|M[*dq? o< dgi/q1
w myp,
@ For incoherent case, g limited by its maximum gmax < v/s. On average Qg =s~6ET.
@ Analysis at NLL order Arnold and Dogan, PRD 78 065008 and recently by Mehtar-Tani,

arXiv:1903.00506 suggest that, QF o< /Gw \/g4 T3wIn(Q3/m3).

@ This mismatch in Qg is fixed by a scale dependent rejection probability bS\/Tf where

b o —m('ff(fg}//fn)%) (VGw/m? ~ 1eG/m% = 1¢/N).
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Compare simulation to the theory in the deep-LPM region

@ Comparing the modified transport
approach to NLL solutions of AMY
equation Arnold and Dogan, PRD 78 065008.

e w < T <« E, incoherent radiation by
Gunion-Bertsch cross-section.

dP/dtdw

@ w > T, consistent with theory calculation.

@ For heavy quark, the dead-cone effect
further suppress the radiation spectrum
1/k3 = 1/(k? +x>M?), - --

100 10! 102 103
w/T
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Compare simulation to the theory in the deep-LPM region

g-q+g, T=0.5 GeV

E 15 WeH E=10 GeV
=L
— 10 =
=2 7’
S 05 o
= Lt !

0.0 ~
> s WeH E=100 GeV
s L .
2 o Agrees when w/T > 1 varying E and as.
= 1.0 S
= -
~ 05 al
(Ol /s
= 00 e
z s WeH E=1000 GeV
< .
j 1.0 = e
P s
- e a;=0.1
o 0.5 /, - 5_
s A (15—0.3

0.0 -

10-!  10° 10! 102 103
w/T
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Compare simulation to the theory in the deep-LPM region

g-q+g, T=0.5 GeV

>E- 15 WeH E=10 GeV
=1
— 10 =
=2 s
% 0.5 /, '

0.0 e
>z_ 1s WeH E=100 GeV
=1
= 1.0 S
= a3
~ 05 .

0.0 e
>2_ 15 WaH E=1000 GeV
< .
j 1.0 = e
= <
~ —— as=0.1
o 0.5 /e - 5_
s 7o as=0.3

0.0 =

10-1  10° 10! 102 10°

w/T

o Agrees when w/T > 1 varying E and as.
@ Running coupling is also implemented,
as(Q? = ¢?) for elastic vertices
as(Q? = k?) for splitting vertices.

Use running a;s in theory and simulation
— MC

10°
— Qo/2

,,,,,,, Qo = mpE/TIN(E/T)
--=- 2Qo

dP/dt/dw

15

1.04

0.5

0.0 '

10! 100 10! 102 103
w [GeV]

Ratio
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In a finite medium, complex interference pattern

@ In principle, this transport approach is better applied to a large / dense medium. And one
should apply, for instance, opacity expansion (Wiedemann, Gyulassy, Levai, Vitev) when L < 7.

E=16 GeV, as=0.3

15 4
—— MC

S —— Theory 3
2 10
3 == FY e, L i i
2 os / @ But the currently implementation does
o g ; - . . .
3 w=3cev L/ w=3GeV demonstrate certain finite-size effect.

0.0 T=0.2 GeV 0 ’ T=0.4 GeV . . . .

0 1 2 3 4 5.0 1 2 3 e Qualitatively the right transition to the
Y 08 large-L limit.
% 02 S ic deviati L
3 e 206 @ Systematic deviations at sma . Theory curves
% 0.1 o 04 Y B— from S Caron-Huot and C Gale, PRC 82 064902
= g
3 P w=8Gev 02 w=38 GeV

0.0 7 T=0.2 GeV 00 T=0.4 GeV

"0 1 2 3 4 "0 1 2 3 4 5

L [fm] L [fm]
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© A first application: extraction of charm § in a transport approach
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Simulation framework for open charm

@ Medium evolution: event-by-event 241D viscous hydrodynamics
@ Production, high-virtuality: Pythia8 T. Sjostrand et al JHEP 05 026, CPC 178 852 .

e HQ transport model at low-virtuality: this talk.
@ Heavy flavor hadronization: Recombination + fragmentation S. Cao et al. PRC 88, 044907.
@ Hadronic phase: Ultra-relativistic Quantum Molecular Dynamics S Bass et al. PPNP 41

225-370, M Bleicher et al. JPG 25 1859 with D-m, D-p cross-sections Z Lin et al. NPA 689, 965
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Where to apply the transport model?

In-medium transport approach

Vac. radiation

o Interface high/low-virtuality models at scale Ak? ~ \/Gw (P. Caucal et al. PRL 120, 232001).

@ Surviving vacuum radiations are either ki > \/qw or T > TQaQP-
TQap: the time when the parton leaves the QGP.
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Bayesian Analysis (Preliminary): Identifying Tunable Parameter

. P _ 2 max{Q,un T}
Effective coupling: as(Q) = (In W)
Medium pre-equilibrium time 7;.
Matching between vacuum-like and medium-induced radiation R\,Aki.

Hard / soft-mode separation scale Q2 = cm?,.

. . A AS _ AS ~
Soft contribution to §: §° = Gpey. + AG
~—
additional part
Ag takes a parametric form, and is allowed to be anisotropic,

KT3

1+ () [+ e8]

Aa EN"
AGg = — | .
aL > (M>
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Global parameter calibration

ALICE Pb+Pb 0-10%

ALICE Pb+Pb 30-50%

ALICE Pb+Pb 60-80%

125 RAA

1.00

0.75

0.50

e s @ Currently compared to LHC
::: CMS Pb+Pb 0-10% 1':: M5 PbaPb 0-100% 03 ALICE Pb+Pb 30-50% Open‘Charm measurements.

) Raa ) Raa V2 . .
100 @ Calculation at RHIC energy in
0.75

050 progress.
0.25
0.00 ALICE %] PRL 120, 102301

03 CMS Pb+Pb 0-10% 03 CMS Pb+Pb 10-30% 03 CMS Pb+Pb 30-50%

v, v v ALICE: Raa JHEP 10 (2018) 174
0.2 0.2
CMS: v, PRL 120, 202301
0.1 T —‘Y:’"\] . 0.1
R O p SR : CMS Raa PLB 782, 474
0.0 o 0.0 0.0
!
10° 10! 102 10° 10 102 10° 10! 107
pr[Gev] pr[Gev] pr[Gev]
IR € s
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e 09 —1
% or b i = 2n () ma{QurT}
o 03 Effective as(Q) = 5 <|n Agen .

In(e)

with g = 2.273

N
S

T lim

R PR N - - N
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> Effectively as = 0.2-0.4 (g = 1.5 -

-
b ! & 2.2) at T =0.3 GeV.
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Use the posterior to define a 95%
credible region of §(E, T).
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With the current set-up, § is

inferred with large uncertainty
(at least a factor of 2). Weak
T and E dependence of §/T3.
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A first Bayesian extraction of §j .
95% credible region of 2§, /§ (red)

Prefer slightly more
isotropic § vs g, than LO
calculations (blue).

0 25 50 75 100
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q
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© Summary
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Summary

@ Recent efforts in LIDO transport model:

» Allow for an interpolating description between diffusion and large angle scattering.
» Improving the LPM treatment in the Boltzmann transport approach.

@ Application to open charm: preliminary Bayesian analysis.
> A large effective coupling as(2.2737T).
» Large uncertainty in § given present model and data.
> A first extraction of the longitudinal transport coefficient.

o Future:

> Better small-L treatment.
» Jet study within the the modular jet simulation framework JETSCAPE (NPA 982 615-618)
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Extrapolate the calibrated § to zero momentum

25 1
4 lattice, static Spatial diffusion coefficient Dg
2] 4 Iatt!ce, charm . 8r T3
¥ lattice, static, continuum 21 TDs = —
4(p—0)
§ = Remark for reading this plot:
E @ Data helps to constrain the large / finite
101 momentum part of §.
@ But the extrapolation in obtaining Ds can
31 be sensitive to how the parametrization

behaves when p — 0.

0+ . - . - @ The red band may be underestimating the

1.0 1.5 2.0 2.5 3.0 . . e
T uncertainty. How to gain sensitivity to Ds?
c
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Back-up: improving the matrix-elements

An improved version of the Gunion-Bertsch cross-section (J Gunion and G Bertsch PRD 25 746, O

Fochler et al. PRD 88 014018 collinear, and xq; < ki, y > 0),

Kk k.—q
M223 X M222CA(1 — X)2 _J_ — %
T (kL—4q1)

Relaxing the condition xq; < k|,

. ki—g.  kL—xq.
(ki —q1)?> (kL —xq.)?
= ki —q. ki

=

(kL —qL)? k2
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M2, o M2 (1—x)P(x) (CF/P + CrB? — (2CF — Ca)A- é) ,
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Bayesian Analysis: Bayes' rule and Posterior
Posterior o< L(Exp|p, Model) x Prior(p)
Experimental inputs on Lo will be very helpful!
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