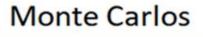
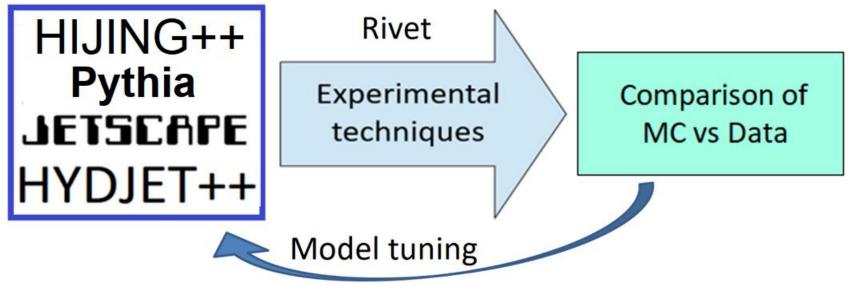
RIVET / RIVET-HI

James Neuhaus





RIVET

Robust Independent Validation of
Experiment and Theory

RIVET

- C++ based package
- Researchers generate code for specific analyses based on published papers
- End users run MC output through analyses
- Compare MC against experimental data

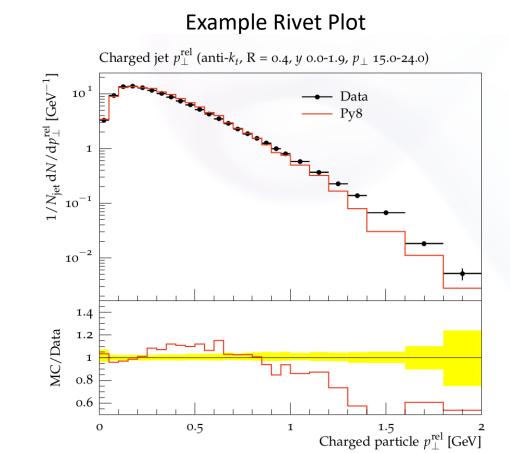
Generating an Analysis

- Plugin with three subroutines
 - *init()* : Register objects which will be used
 - analyze() : calculate desired observables for single MC event output
 - *finalize()* : prepare histogram data

RIVET Projections

- RIVET uses "Projection" objects
- Reduced duplication of effort between analyses
- Includes staples such as:
 - ChargedFinalState Charged particles, Kinematic Cuts can be applied
 - FastJets FastJet wrapper

Using RIVET


- Can run one or multiple analyses over multiple MC output files (.hepmc) or pipe in output from a simultaneously running MC
- RIVET is single threaded, most (all?) analyses written so "finalize" hinders merging of parallel run RIVET instances

RIVET Output

 Output visualized through provided scripts and YODA package

 Directly compares MC vs published data

RIVET-HI

- RIVET lacks Heavy Ion functionality
- ALICE spun off RIVET-HI
 - Added centrality, 3 analyses
- UT-Fork created Spring 2018
 - Primarily developed over 10 week REU
 - 4 Undergraduates, 1 new Graduate student
 - Dr. Redmer Bertens
 - https://github.com/cnattras/rivet-hi

Centrality Handling

- Credit: ALICE collaboration
- Each analysis selects a number of events to calibrate centrality binning
 - Multiplicity or Impact parameter based
 - Calibration events are not used for calculating any other observables

UT-Fork

- Added new projections:
 - Nth order event plane calculator using Q vectors
 - Event Plane Resolution Calculation
 - Fourier-Fit v_n Calculator
 - Detector Pixel mapping (allows tower Jets)

Background Handling

- Methods incorporated for reconstructed jets:
 - STAR/ALICE method [1]
 - ATLAS method [2]
 - CMS Noise/Pedestal [3]
 - CMS η reflection [4]

[1] Eur. Phys. J. C (2011) 71: 1539[3][2] Phys. Lett. B 719, 220 (2013)[4]

[3] Eur. Phys. J. C 50 (2007) 117[4] Phys. Rev. C 90, 024908 (2014)

New HI Analyses

- 2x ALICE Jet Spectra [1] [2]
- CMS Inclusive Jet Cross Section [3]
- ATLAS R_{AA} [4]
- CMS Fragmentation Functions [5]
- ATLAS, ALICE Jet v₂ [6] [7]

JHEP 30 (2014) 013
Phys. Lett. B 746 (2015) 1
Phys. Rev. C 96 (2017) 015202

[4] Phys. Rev. Lett. 114 (2015) 072302 [5] Phys. Rev. C 90 (2014) 024908 [6] Phys.Lett. B 753 (2016) 511-525[7] Phys. Rev. Lett.111 152301 (2013)

Summary

• RIVET melds theory and experiment

 RIVET-HI handles centrality and UT fork provides heavy ion-specific tools

Great way to get undergraduates
experience in Relativistic HI Physics

Questions?

Special Thanks to:

- Dr. Christine Nattrass
- Dr. Soren Sorensen
- Dr. Redmer Bertens
- UTK RIVET-HI working group:
 - Mariah McCreary
 - Ricardo Santos
 - . Austin Schmier
 - Jerrica Wilson

Funding provided by the JETSCAPE collaboration and the NSF

 "Weeks of programming can save you hours of planning." – Source Unknown

