

Forward Physics Opportunities at RHIC

Li YI (易立) <u>li.yi@sdu.edu.cn</u> Institute of Frontier and Interdisciplinary Science Shandong University, Qingdao

Outline

- Cold QCD interests
- Heavy ion perspectives
- Upgrades for 2021+

2+1 Dimensional Imaging of Proton Why pp and pA for Cold QCD before EIC?

Complementarity Two concepts lay the foundation of QCD factorization & universality

To tests these concepts and separate interaction dependent phenomena from intrinsic nuclear properties different complementary probes are critical Probes: high precision data from ep, pp, e+e-

Jet Underlying Event at Mid-rapidity

- Multi-parton interaction, initial/final state radiation, color reconnection with beam remnant..
- Involve multiple scales; No formal factorization theorems

Forward UE with Mid-rapidity jet

CMS, JHEP04(2013)072

Mid-rapidity jet

Forward UE • Energy dependence: kinematic effects? ➡ RHIC energy?

Nuclear Parton Distribution Function (nPDF)

- Reveal gluon distribution in nucleus
- Set baseline of cold matter effect for HIC

Toward Mapping 3D Initial State in A+A

Initial fluctuation in the transversal plane at mid-rapidity well studied, but very little knew in the longitudinal direction

Studying **forward rapidity** to constrain longitudinal structure of initial conditions

- perfect fluidity
- most vortical
- opaque to color object

Moving forward to constrain the shear viscosity of QCD matter

M.Li, C. Shen, PRC 98, 064908 (2018)

G. Denicol, A. Monnai, B. Schenke, PRL 116, 212301 (2016)

T (and μ_B !) profiles vary longitudinally (alternative exp. approach to map QCD phase diagram)

η/s(T) can be constrained by v_n(η)

Li Yi, 13th High-pT Workshop, March 22, 2019

Longitudinal Fluctuation by EP de-correlation

Event Plane de-correlation:

$$\mathbf{r}_{n} = \frac{\left\langle \vec{V}_{n}(-\eta^{a})\vec{V}_{n}^{*}(\eta^{b})\right\rangle}{\left\langle \vec{V}_{n}(\eta^{a})\vec{V}_{n}^{*}(\eta^{b})\right\rangle} \sim \left\langle \cos n \left[\Psi_{n}(\eta^{a}) - \Psi_{n}(-\eta^{a})\right]\right\rangle$$
$$\mathbf{V}\mathbf{n} = \mathbf{V}_{n} \,\mathbf{e}^{\,\mathrm{i}\,\mathrm{n}\,\Psi\,\mathrm{n}}$$

Initial density profile is not boost-invariant:

- Fluctuating length of string
- Fluctuation of forward and backward going participants
- Fluctuating strength of string

ATLAS Collaboration, EPJC (2018) 78:142 L. Pang et al, Eur. Phys. J. A 52 (2016) 97 L. Pang et al, arXiv: 1802.04449 STAR, QM18 9

Global Polarization vs Rapidity

STAR, *Nature* **548**, 62–65

. . .

Liang & Wang, PRL 94 (05) 102301 Liang & Wang, PLB 629(05)20 Gao et al, PRC 77 (08) 044902 Yang, et al arXiv:1711.06008

- Most vortical fluid ($\omega/T \sim 0.001$)
- Measured through Λ polarization
- Forward discriminates models

HIJING with energy flow: Deng&Huang, PRC 93 (2016) 064907 Ko, et al., arXiv:1706.09467

0

η

-1

-2

2

1

Forward Jets in HIC

w/o the need to compare across different \sqrt{s} and experiments

Medium Profiles

M.Li, C. Shen, PRC 98, 064908 (2018)

Forward region: lower T, higher μ_B

Parton Mixture

Martin et al., EPJC63 (2009) 189

Spectra Slope

Jet Shape/Sub-structure

 $\Psi(r) = \frac{1}{N^{\text{jet}}} \sum_{\text{jets}} \frac{p_T(0, r)}{p_T(0, R)}, \ 0 \le r \le R$ ATLAS, PRD.83.052003 0.12 $1 - \Psi(r = 0.3)$ 0.11 pp@7 TeV 0.1 0.09 0.08 0.07 0.06 ATLAS 0.05 anti- k_t jets R = 0.6 0.04 $160 \text{ GeV} < p_{T} < 210 \text{ GeV}$ 0.03 1.5 2.5 0 0.5 2 1 lyl Slighter narrower

Explore Medium Profiles with Forward Jets

ATLAS, PLB 790 (2019) 108-128

More suppression at forward for high p_T

Forward Jet in pp@500 GeV

Good jet statistics at forward (2.4 < η < 4.0)

What will Come

Proposed RHIC runs (one version):

2021	p [↑] p@510	1.1 fb ⁻¹	
2021	p ¯ p¯@510	1.1 fb ⁻¹	
2023	p [↑] p@200	300 pb-1	
2023	p⁺Au@200	1.8 pb-1	
2023	p†Al@200	12.6 pb ⁻¹	
2024/2025	AuAu@200	1B MB	

Forward Program

Objective:

unique program addressing several fundamental questions in QCD -> essential to

- the mission of the RHIC physics program in cold and hot QCD
- fully realize the scientific promise of the EIC
 - lay the groundwork, scientifically & by refining exp. requirements
 - detector technologies under real conditions

Scientific goals:

p+p:

3-dim. imaging of the proton in momentum and spatial coordinates p+A

Nature of initial state and hadronization in nuclear collisions

Onset and A-dependence of saturation

A+A

Longitudinal medium characterization

Flow + vorticity + jet

Forward Upgrade: fSTAR

Requirements:

measure jets, photons, electrons, charged particles

STAR forward upgrade:

Coverage: $2.5 < \eta < 4$

Calorimetry: Electromagnetic and Hadronic

Tracking: Silicon detectors and small-strip Thin Gap Chambers (sTGC)

STER

Detector	pp and pA	AA	
ECal	~10%/√E	~20%/√E	
HCal	~50%/√E+10%		
Tracking	charge separation photon suppression	0.2 <p<sub>T<2 GeV/c with 20-30% 1/p_T</p<sub>	

https://drupal.star.bnl.gov/STAR/system/files/Proposal.ForwardUpgrade.Nov_.2018.Review.pdf

Forward Upgrade: fSTAR

Requirements:

measure jets, photons, electrons, charged particles

STAR forward upgrade:

Coverage: $2.5 < \eta < 4$

Calorimetry: Electromagnetic and Hadronic

Tracking: Silicon detectors and small-strip Thin Gap Chambers (sTGC)

https://drupal.star.bnl.gov/STAR/system/files/Proposal.ForwardUpgrade.Nov .2018.Review.pdf

Detector	pp and pA	AA	
ECal	~10%/√E ~20%/√E		
HCal	~50%/√E+10%		
Tracking	charge separation photon suppression	0.2 <p<sub>T<2 GeV/c with 20-30% 1/p_T</p<sub>	

SDU contributes to

Forward Upgrade: fsPHENIX

sPHENIX forward design:

Coverage: $1.2 < \eta < 4$

Default choice

Calorimetry*: Electromagnetic (PbSc + PbWO₄) Hadronic (PbSc with SiPMs)

Tracking*: Gas electron multiplier (GEM)

SPHE y [m] 3 HCAL FHCAL Solenoid Flux return FEMC HCAL CEMC **GEM** Central tracker Field shaper z [m] 0 2 3 1

https://www.sphenix.bnl.gov/web/system/files/sPH-cQCD-2017-001 draft 2017 06 02.pdf

Tracking: dp/p < 10% for 0 GeV/c $ECal: <math>\sigma_E / E \sim 8\% / E$ (GeV) PbSc $\sigma_E / E \sim 12\% / E$ (GeV) PbWO₄ Hcal: 70%/E(GeV)

Summary

The Forward program at RHIC is

- A tale of initial state: nucleon to nuclei
- 3-D imaging of HIC with flow + vorticity + jet + ...
- A portal to EIC

Detector upgrades Now - 2021 for running in 2021-2025

Thanks to E. A. Aschenauer, H. Caine, G. Y. Qin, L. Ruan, Q. Xu for their inputs!

Join Us to work on: Detector upgrade Forward simulation HIC & Spin physics ..

Shandong University Qingdao Campus

We're hiring: Postdocs, graduates, .. May4th Square

More info: <u>li.yi@sdu.edu.cn</u>

Li Yi, 13th High-pT Workshop, March 22, 2019

						ECal+Hcal+Tracking
				Clear signatures for Saturation	Dihadrons, y-jet, h-jet, diffraction	
		p ^T Al @ 200	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct photons and DY	Forward instrum.
			8 weeks	A dependence for Saturation	Dihadrons wist hist diffraction	ECal+HCal+Tracking
	2023			A-dependence for Saturation	Dillations, γ -jet, il-jet, diffraction	E
				Longitudinal de-correlation	$C_n(\Delta \eta)$ and $r_n(\eta_a, \eta_b)$	Forward instrum.
	to					ECal+HCal or
						Ifacking
	2025	AuAu @ 200	1 Billion Minbias	$n/s(T)$ and $\zeta/s(T)$	$V_{r,s}(n)$	Forward instrum.
	2025				- 121-17	Tracking
						Forward instrum.
			Events	Mixed flow Harmonics	$C_{m,n,m+n}$	ECal+HCal or
						Tracking
				Panidity dependence of Userson Delegization	$\mathcal{D}_{(m)}$	Forward instrum.
				Rapidity dependence of Hyperon Polarization	$P_{H}(\eta)$	Tracking
						Forward instrum.
				Ridge	$dN/d(\Delta \eta)d(\Delta \phi) \& V_{n\Delta}$	ECal+HCal or
						Tracking
	2021	p [†] p @ 510	1.1 fb ⁻¹	TMDs at low and high x	AUT for Collins observables, i.e.	Forward instrum.
			10 weeks		hadron in jet modulations at $\eta >$	ECal+HCal+Tracking
					1	
	2021	$\vec{p} \cdot \vec{p} @ 510$	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Forward instrum.
			10 weeks		at $\eta > 1$	ECal+HCal
-						

	Year	√s (GeV)	Delivered	Scientific Goals	Observable	Required
			Luminosity			Upgrade
	2024	$\mathrm{p}^{\uparrow}\mathrm{p}$ @ 200	300 pb ⁻¹	Subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and	Forward instrum.
n p			8 weeks		flavor enhanced jets	ECal+HCal+Tracking
P	2024	p†Au @	1.8 pb ⁻¹	What is the nature of the initial state and hadronization	R_{pAu} direct photons and DY	
		200	8 weeks	in nuclear collisions		Forward instrum.
el v						ECal+HCal+Tracking
ni viti				Clear signatures for Saturation	Dihadrons, γ-jet, h-jet,	
ng I S					diffraction	
H		p†Al @	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct photons and DY	Forward instrum.
1		200	8 weeks			ECal+HCal+Tracking
				A-dependence for Saturation	Dihadrons, γ-jet, h-jet,	
					diffraction	
	2021/22	p [†] p @ 510	1.1 fb ⁻¹	TMDs at low and high x	AUT for Collins observables, i.e.	Forward instrum.
i ro			10 weeks		hadron in jet modulations at $\eta >$	ECal+HCal+Tracking
					1	
tia re	2021/22	$\vec{p}\vec{p}$ @ 510	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Forward instrum.
			10 weeks		at $\eta > 1$	ECal+HCal

Moving forward to constrain the shear viscosity of QCD matter

G. Denicol, A. Monnai, B. Schenke, PRL 116, 212301 (2016)

* need to remove nonflow

Medium T (and μ_B) profiles vary in the longitudinal direction $\eta/s(T)$ can be constrained by $v_n(\eta)$

√sNN ybeam 200GeV 5.36 2.76TeV 7.99 5.02TeV 8.59 7TeV 9.61

pp collisions at $\sqrt{S} = 200$ GeV and R = 0.4

D. Florian and W. Vogelsang, Phys. Rev. D 76, 074031

ATLAS, arXiv:1702.00674v2

T. Renk, 1406.6784

Central region does not distinguish between processes.

Saturation vs shadowing

Both relate to the same concept: # of gluons in the wave function of a nucleus at small-x is reduced wrt the simple addition of the gluon field of constituent nucleons

Saturation: Dynamical description via gluon self-interactions that tame the growth of gluon densities towards small-x

• Nuclear shadowing: Empiric parametrization fitted to data. Q2-dependent assumed to be described by DGLAP evolution.

J. L Albacete

CGC predicts suppression of back-to-back correlation

Saturation Physics

PHENIX, Phys. Rev. Lett. 107, 172301 (2011)

Suppressed away-side: consistent with CGC expectation Alternative explanation: double interaction in deuteron; -> p+Au instead of d+Au

PHOBOS, White paper, NPA 757 (2005) 28-101

Forward Jet at RHIC Energy (pp@500 GeV)

A_NDY Collaboration

arXiv:1304.1454v2

physletb.2015.10.001

GY. Qin, et al, PhysRevC.76.064907