Automated discovery of jet substructure analyses

Yue Shi Lai

Lawrence Berkeley National Lab, Division of Nuclear Science

High-p_T Physics in the RHIC/LHC Era
“Why” and “what can you do with it?”

- Jet substructure studied as “on-off switches”, results have not been shown how to probe the medium quantitatively with jet substructure

- E.g. CMS z_g: Red-dashed (BDMPS) and orange-dashed (SCET) require 10% accuracy, beyond experimental reach

- State-of-the-art flow analyses look like this:

A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 120, 142302 (2018)

Ingredient: Neural network (NN)

- Repetition of: linear transform + nonlinear “activation”
- Universal function approximator
- Scalability/throughput for huge datasets (and many “success stories”)
- But learned information is hidden inside $100-10^8$ neurons

Ingredient: Symbolic Regression

- Genetic algorithm ("mutation" of the equation as a graph) search for the right equation
- Regularize by complexity = number of nodes
- Difficult to apply for high dimension and (HEP/NP-) large data sample
- Schmidt & Lipson criticized for having the exact right phase space for Hamiltonian mechanics as input

Analyses are always mathematical functions:
- Per-event or per-reconstructed object observable
- Observable is then statistically analyzed (histograms = a series of step-functions, means, ..., correlation, event mixing)

Key ingredient is permutation symmetry:
- Regular NN can be made permutation symmetric by symmetric polynomials
- **New even for NN: previously never attempted large-scale and with more than 1 simultaneous variable**
- Training works, and each training step corresponds to $N!$ normal NN training
 \Rightarrow Gigantic speed-up (typically $N \approx 1000$ with a “minimal” analysis)

See arXiv:1810.00835 for details how to construct them
A NN that simultaneously builds observables and tests, if a legal (permutation symmetric) analysis can be constructed to use it.
Jewel and Linearized Boltzmann Transport (LBT) for $\sqrt{s_{NN}} = 5.02$ TeV Pb-Pb 0–10% embedded into HYDJET 1.9 0–10%

Jet $100 < p_T < 500$ GeV/c selection after UE (UE subtracted) and has the smearing of an actual measurement

Jewel with $0.16 \leq T_i \leq 0.76$ GeV/k, $0.2 \leq \tau_i \leq 0.8$ fm

200k events per T_i, τ_i, or 3.2M Jewel events total

Fully “whitened”: jet spectra are reweighted to have no T_i, \hat{T} or τ_i dependence, Jewel/LBT centrality randomized with HYDJET centrality

LBT with Gubser flow, $0.383 \leq \hat{T} \leq 0.538$ GeV/k (to match Jewel)

Initial partons + hadronization with PYTHIA 8

200k events per \hat{T}, or 0.8M LBT events total
Input jet shape/substructure

- Each polynomial corresponds to a multigraph $G = (V, E)$

- $\text{EFP}_G = \sum_{j_1} \cdots \sum_{j_{N_V}} \left(z_{j_1} \cdots z_{j_{N_V}} \prod_{(k,l) \in E} \theta_{kl} \right)$

- Set size of $E =$ degree of polynomial

- 490 polynomials up to degree 7, 486 are used (4 remaining takes 6 min per jet to calculate)

- Substructures are not UE subtracted (left for NN)

\[= \sum_{i_1=1}^{M} \sum_{i_2=1}^{M} \sum_{i_3=1}^{M} \sum_{i_4=1}^{M} z_{i_1} z_{i_2} z_{i_3} z_{i_4} \theta_{i_1 i_2} \theta_{i_2 i_3} \theta_{i_3 i_4}^{2} \theta_{i_4} \]

Last ingredient: “Nudge” the NN to simplicity

See arXiv:1810.00835

- R takes the bound $I_{lm} = \frac{\partial \text{out}_l}{\partial \text{in}_m}$ and counts how many variables are in use
- Adjust the regularization R until the result is simple enough (LASSO)
- **Also new for NN: Interval arithmetic bounds for regularization**
- Regularized NN can then be fed into symbolic regression, with a (weakly) modified FFX [M. Trent, Genetic Programming Theory and Practice IX, Springer (2011)]
Result for Jewel

- $N = 2500$ jets needed to determine T_i
- Overall analysis:
 \[d_{1,SR} = 8.99 - 0.176N\langle c_{16} \rangle - 0.175N\langle c_1 \rangle \]
- First approximate c_1 (Einstein notation):
 \[
c_{1,SR} = 0.0112 + 45.5 \theta_{ab}\theta_{ac}\theta_{bc}\theta_{ad}\theta_{bd}\theta_{ae}\theta_{ce}z_a \cdots z_e + \\
 + 20.9 \theta_{ab}\theta_{ac}\theta_{bc}\theta_{ad}\theta_{be}\theta_{ae}\theta_{de}z_a \cdots z_e + \\
 + 26.33 \theta_{ab}\theta_{ac}\theta_{bd}\theta_{cd}\theta_{ae}\theta_{de}z_a \cdots z_e - \\
 - 4.16 \theta_{ab}\theta_{ac}\theta_{ad}\theta_{ae}z_a \cdots z_e
\]
- $c_{1,SR}$ uses 5th and 7th order (“prongs”) correlation
- $c_{1,SR} < 0$ becomes depopulated with lower temperature
- A feature of Jewel recoil
- The NN never saw any non-recoil events, yet it found out something similar to the groomed jet mass (CMS-HIN-16-024, arXiv:1805.05145)!
- $100 < p_T < 300$ GeV/c plotted
Result for Jewel

- Approximate c_{16}:
 $$c_{16,SR} = 0.0362 + 2.563 \theta_{ab}\theta_{ac}\theta_{ad}\theta_{ae}z_a \cdots z_e - 0.2017 \theta_{ab}z_a z_b$$

- A gradual, shifting distribution
- Expression contains simple 2-particle correlations, with a nonlinearity \Rightarrow subtraction for average jet expectation
- $100 < p_T < 300$ GeV/c plotted
- Difference in expression to arXiv is due to powers in EFP not generated (mistakenly), update coming
How does it work?

- Jewel was modified to produce (infinitesimal momentum) splitting tags that are clustered into jets.
- Count inside each jet the number of splittings in the same area.
- $c_{1,SR}$ and $c_{16,SR}$ both tagger for no. of internal splittings.
- Most of the regions tag few (1–4) splittings.
- The $c_{1,SR} < 0$ is used to tag very high > 4 splittings.
- You can also see how $c_{1,SR} < 0$ tags jets that are rarely produced from PYTHIA 8 (.235, CUETP8M1) and Herwig 7 (.1.1, H7.1-Default).
Result for LBT

- \(N = 1200 \) jets needed to determine \(\hat{T} \)
- \(d_{1,SR} = 4.49 - 0.318N\langle c_{13} \rangle - 0.00653(N\langle c_{13} \rangle)^2 \)
- Approximate \(c_{13} \):
 \[
 c_{13,SR} = 0.0453 - 0.00109 \log_{10}(p_1) (\log_{10}(p_2) + \log_{10}(p_3)) - 0.000829 \log_{10}(p_2) \log_{10}(p_3)
 \]
 \[
 p_1 = \theta_{ab} \theta_{ac} \theta_{bc} \theta_{ad} \theta_{bd} \theta_{ae} \theta_{be} z_a \cdots z_e
 \]
 \[
 p_2 = \theta_{ab} \theta_{ac} \theta_{bd} \theta_{cd} \theta_{ae} \theta_{de} z_a \cdots z_e
 \]
 \[
 p_3 = \theta_{ab} \theta_{ac} \theta_{bd} \theta_{cd} \theta_{ae} \theta_{de} z_a \cdots z_e
 \]
- Demonstrates the system generating non-linear observables
- Possibly log being function of convenience to handle the otherwise long tail (some simplification by hand)
- \(100 < p_T < 300 \text{ GeV}/c \) plotted
Summary

- First time an end-to-end system is constructed to:
 - Test if jet substructure can be used to independently extract properties of the medium, with realistic no. of events
 - Discover new observables
- NN with properties that are also new for comp. science
- Observables indeed found to extract temperature for Jewel and LBT from purely observing $N = 1200–2500$ jets
- The presented system discovers the effect of Jewel recoil
 ⇒ a system probing models at a detail comparable to the current field of human experts
- Many applications beyond the immediate Pb-Pb and jet substructure studies
Part I

Backup
Jewel with no recoil
Permutation symmetry vs. algebra vs. statistics

- Expressibility of permutation symmetry gives the Galois theory of polynomials
- Two well-known types of polynomial:
 A Elementary symmetric polynomials:
 \[e_0(x_1, \ldots, x_n) = 1 \]
 \[e_1(x_1, \ldots, x_n) = \sum_{1 \leq i \leq n} x_i \]
 \[e_2(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} x_i x_j \]
 \[\vdots \]
 \[e_n(x_1, \ldots, x_n) = \prod_{1 \leq i \leq n} x_i \]
 B Power sum symmetric polynomials:
 \[p_k(x_1, \ldots, x_n) = \sum_{1 \leq i \leq n} x_i^k \]
- Both are equivalent (Newton’s identities), though not equally simple as computational graphs
Permutation symmetry vs. algebra vs. statistics

- This still does not help with multivariate functions (where two variables cannot have a mutually different permutation)

- Solution:
 \[s_j(x) = \sum_{k=1}^{N} x_{j\pi(k)}^{m-l} x_{(j+1) \text{ mod } M, \pi(k)}^{l}, \quad l \in \{1, \ldots, m-1\} \]
 for \(N \) \(M \)-dimensional variables (with a special case for \(M = 2 \))

- Can check using all \(M \)-dimensional symmetric polynomials, that \(s_j \) is complete (analogous to Newton’s identities)
p_T dependence

100 < p_T < 150 GeV/c

200 < p_T < 300 GeV/c
p_T dependence

100 $< p_T < 150$ GeV/c

200 $< p_T < 300$ GeV/c
p_T dependence

$100 < p_T < 150 \text{ GeV}/c$

$200 < p_T < 300 \text{ GeV}/c$