PS status 18 May – 1 June 2018

A. Guerrero, H. Damerau on behalf of PS operations and supervisor team

Thanks to A. Huschauer for the input on transverse studies

MSWG meeting – 1 June 2018

H. Damerau

PS status 18th May – 1st June

\rightarrow Difficult weeks for the PS Complex with about 90% beam availability

- Injection septum breakdown on Thursday
 - \rightarrow Broken stripline connection and damaged feedthrough
 - \rightarrow All day intervention in the PS tunnel to repair
 - \rightarrow 16h45 downtime for all beams
- Pole face winding power converter PR.WFW down on Tuesday-Wednesday
 - \rightarrow Intervention by piquet(s) and specialist
 - \rightarrow Auxiliary power supply of main dB/dt compensation exchanged
 - \rightarrow 6h50 downtime for all beams
- No user beams in PS during Wednesday MDs (10 h), exception: low intensity TOF

Status of operational beams

Fixed target beams	Status	Comment
EAST Irrad/North	Operational	With parasitic TOF
MTE	Operational	Delivered to SPS at ~1.6 · 10 ¹³ ppp
TOF	Operational	Up to ~7.5 · 10 ¹² ppp
AD	Operational	~1.44 · 10 ¹³ ppp (back to nominal)
LHC-type beams	Status	Comment
LHCPROBE, LHCINDIV	Operational	
LHC25 (12b, 72b)	Operational	
LHC25 BCMS (12b, 48b)	Operational	
EARLY Pb54+	Basic setting-up	Taken for setting-up in SPS ($h = 16/21$)
ILHC100 (4b)	Basic setting-up	Taken for setting-up in SPS

Preparation of proton beams

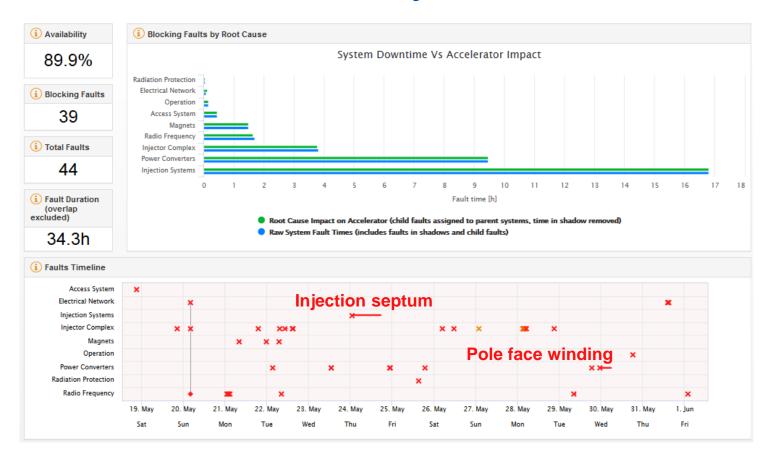
- MTE using h = 1 synchronization in PSB
 - Longitudinal setting-up completed in the PSB some weeks ago
 - Transverse settings updated to present operational MTE beam
 - Validation ongoing in PS
- 100 ns bunch spacing with protons
 - Basic setting-up in PSB and PS
 - Increased longitudinal emittance from PSB to keep beam stable at PS flat-bottom
 - Still requires fine adjustments in PS with higher intensity

Preparation of ion beams

- Single-bunch Pb⁵⁴⁺ (early)
 - New scheme with acceleration from intermediate flat-top on $h = 21 \rightarrow \text{operational}$
- Pb⁵⁴⁺ with 75 ns bunch spacing
 - 3-bunch transfer LEIR-PS established
 - First iteration setting-up of all RF manipulations in PS
 - Batch compression from h = 21 to 28 and re-bucketing h = 28/169 critical

Status of transverse studies

- MD2586 beam missteering at injection
 - Measuring emittances at various times after injection
- MD3104 space charge studies
 - Brightness scan with adiabatic bunch compression
- MD3105 tune diagram measurements
 - Continued investigation of remnant magnetic fields of different non-linear elements
- MD3106 amplitude detuning measurements
 - Investigation of remnant fields with turn-by-turn data
- MD3187 nTOF with longitudinal blow-up at 2.5 GeV
 - Improved transmission at operational intensities, further improvement studied


Status of transverse studies

- MD3367 tune shift vs. intensity
 - Comparison with past measurement and reference before LS2
- MD3368 optics measurements
 - External waveform generator to use transverse feedback as AC dipole
- Dedicated MD for injection line rematching
- MD3404 reliability checks to use KFAs as SEM grid protection

Status of longitudinal studies

- MD3184 beam measurements of resistive broad-band impedance
 - First intensity scan: long. quadrupolar beam-transfer function and bunch distance
- MD3319/3364 intensity ramp-up with LHC 25 ns beam
 - Pushing intensity to limit \rightarrow seems longitudinally more stable than in 2016/17
 - Not quite expected with hardware upgrades during YETS, investigating
- MD3320 lead ion beam with 75 ns spacing
 - Longitudinal manipulations sensitive; investigating satellite population
- MD3387 beam measurements of cavity impedances
 - Beam induced voltage of 40 MHz and 80 MHz cavities (and 10 MHz)
- MD3390 fixed target beam with h = 1 synchronization in the PSB
 - Fine tuning in PSB and PS

PS status 18th May – 1st June

