TRANSFER LINE LEIR-PS

R. Alemany, E. Manosperti

Introduction

1. In 2015-2016 was noticed that the correction of the transfer line from LEIR to PS was difficult if based on the optics model used by YASP:

2. Despite of this, with trial an error, a good transmission and injection efficiency has always been possible

Transfer line

Fringe field matrix

LEIR-PS matching point (A):
$\beta_{x}=20 \mathrm{~m}, \quad \beta_{y}=14.8 \mathrm{~m}$,
$\alpha_{x}=1.35, \quad \alpha_{y}=-0.57$,
$D_{x}=2.5 \mathrm{~m}, \quad D_{y}=0 \mathrm{~m}$,
$D_{x}^{\prime}=-0.12, \quad D^{\prime}{ }_{y}=0$
PS septum 26 centre:
$\beta_{x}=11.47 \mathrm{~m}, \quad \beta_{y}=19.83 \mathrm{~m}$,
$\alpha_{x}=0$,
$\alpha_{y}=0$,
$D_{x}=2.16 \mathrm{~m}$,
$D^{\prime}{ }_{x}=-0.02$,
$D_{y}=0 \mathrm{~m}$,
$D^{\prime}{ }_{y}=0$
$M_{H}=\left(\begin{array}{ccc}1.125 & 6.534 & 0.022 \\ 0.0503 & 1.181 & 0.008 \\ 0 & 0 & 1\end{array}\right)$
$M_{V}=\left(\begin{array}{ccc}0.878 & 5.683 & 0 \\ -0.049 & 0.825 & 0 \\ 0 & 0 & 1\end{array}\right)$
Reference: M. Martini, 'Injection of the lead ion beam for LHC into the PS'

Optical parameters	$\beta_{\mathrm{x}}[\mathrm{m}]$	α_{x}	$\beta_{\mathrm{y}}[\mathrm{m}]$	α_{y}	$\mathrm{D}_{\mathrm{x}}[\mathrm{m}]$	$\mathrm{D}_{\mathrm{x}}^{\prime}$	$\mathrm{D}_{y}[\mathrm{~m}]$	D_{y}^{\prime}
PS septum 26 centre	12.48	0	19.71	0	2.21	-0.02	0	0
LERR-PS matching point	21.50	1.62	15.21	-0.71	2.78	-0.17	0	0

Optics

PS solution

Beam size

Aperture

Is this optics correct? \rightarrow ORBIT RESPONSE MATRIX

1. Using the existing tools for LHC to measure the optics parameters: YASP, ALOHA, Accelerator Model, JMAD, we want to understand which optics better fits the transfer line
2. Since this has not been done before for LEIR, we are now investing sometime in getting the tools ready.
3. For example:
4. LEIR suffers from stray fields, and this is not taken into account yet in those tools \rightarrow working on this
5. LEIR uses BENDS as CORRECTORS, this is not taken into account yet in those tools \rightarrow working on this
6. While for a closed ring there exist very well established methods to measure the betatron phase and beta functions, the measurement of lattice functions of a transfer line is a non trivial task.
7. The beam only passes the transfer line once and therefore the resolution of the Beam Position Monitors (BPMs) is limited and the trajectory depends strongly on the initial conditions and therefore on the stability of the injector.

Is this optics correct? \rightarrow ORBIT RESPONSE MATRIX

6. The basic idea is to use model-fits to kick response data, also known as the LOCO principle to determine the lattice parameters.
7. The objective is to develop a model for the transfer lines which includes all the observed effects and can be used to match the optics of the transfer lines correctly to the PS optics and thus ensure the required emittance preservation and transmission efficiency.
8. The key quantity is the ORBIT RESPONSE MATRIX, $\mathbf{R} \rightarrow$ describes the effect of a set of Nc corrector kicks on the position readings of each of the $\mathbf{N m}$ BPMs
9. $\mathrm{Nc}=3$ in H and 2 in V
10. $\mathrm{Nm}=7$ in H and 7 in V

$$
\vec{u}=R \vec{\delta} . \quad \vec{u}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\ldots \\
u_{N_{M}}
\end{array}\right), \vec{\delta}=\left(\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\ldots \\
\delta_{N_{C}}
\end{array}\right)
$$

11. The easiest way to measure Rij is to acquire two trajectories one with positive kick and the other with negative and calculate the difference of the two at each monitor:

$$
R_{i j}^{\mathrm{meas}}=\frac{\Delta u_{i}}{\Delta \delta_{j}}
$$

Is this optics correct? \rightarrow ORBIT RESPONSE MATRIX

12. The response matrix has to be calculated for the model as well.
13. In this case:

$$
R_{i j}^{\text {model }}= \begin{cases}\sqrt{\beta_{i} \beta_{j}} \sin \left(\mu_{i}-\mu_{j}\right) & \text { for } \mu_{i}>\mu_{j} \\ 0 & \text { otherwise }\end{cases}
$$

$\beta \mathrm{i}$: beta function at the monitor
βj : beta function at the corrector $\mu \mathrm{i}-\mu \mathrm{j}=$ phase difference
14. This is valid for a linear machine, if coupling or non-linear effects have to be included, then numerical calculations are needed.
15. Status of the analysis: we have taken data, we are in the process of analysing.

Conclusions

1. Work in progress
2. Using LHC tools and adapting them to LEIR case
3. The stray field descriptiion is from many years ago, we have contacted the MAGNET team to have more recent values
4. With the new optics the transmission efficiency is 98%

SPEAR SLIDES

Beam parameters

Ions of Pb^{54+} with $\mathrm{A}=208$ and $\mathrm{m}=195.32 \mathrm{GeV} / \mathrm{c}^{2}$

Total kinetic energy in extraction $E_{k, \text { ext }}=15.02 \mathrm{GeV}$

Total energy in extraction $E_{\text {ext }}=210.34 \mathrm{GeV}$

Total momentum in extraction $\quad P_{\text {ext }}=78.06 \mathrm{GeV} / \mathrm{c}$
Relativistic parameters $\beta_{r e l}=\frac{p c}{E}=0.371 \quad \gamma_{r e l}=\frac{1}{\sqrt{1-\beta^{2}}}=1.077$

Beam size

Geometric emittance $\varepsilon=\varepsilon_{n} /\left(\beta_{\text {rel }} \cdot \gamma_{\text {rel }}\right)=2.5 \mu m$

$$
\varepsilon_{x}^{n}=\varepsilon_{y}^{n} \quad \varepsilon_{x}=\varepsilon_{y}
$$

where $\varepsilon_{n}=1 \mu m \cdot \mathrm{rad}$ is the normalized emittance

$$
\begin{aligned}
\sigma_{D_{x}, D_{y}} & \left.=\frac{\Delta p}{p} \cdot D_{x, y} \quad \text { with } \quad \frac{\Delta p}{p}=0.003 \text { (worst case }\right) \\
\sigma_{\beta_{x}, \beta_{y}} & =\sqrt{\beta_{x, y} \cdot \varepsilon_{x, y}}
\end{aligned}
$$

Total beam size: $\quad \sigma_{x, y}=\sqrt{\sigma_{\beta_{x}, \beta_{y}}^{2}+\sigma_{D_{x}, D_{y}}^{2}}$

QUADRUPOLES	$\mathrm{kL}\left(\mathrm{m}^{-1}\right)$
EE.QFN10	0.463518
EE.QDN20	-0.380824
EE.QFN30	0.255181
ETL.QNN10	0.098527
ETL.QNN20	-0.127474
ETL.QNN30	0.101173
ETL.QNN40	-0.10641
ETL.QNN50	0.175188
ETL.QNN60	-0.170497
ETP.QDN10	-0.155017
ETP.QFN20	0.15187

Initial conditions at LEIR extraction septum (ER.SMH40)
$\beta_{x}=\beta_{y}=5 \mathrm{~m}$

$$
D_{x}=D_{y}=0 \mathrm{~m}
$$

