L1Muon Barrel Report

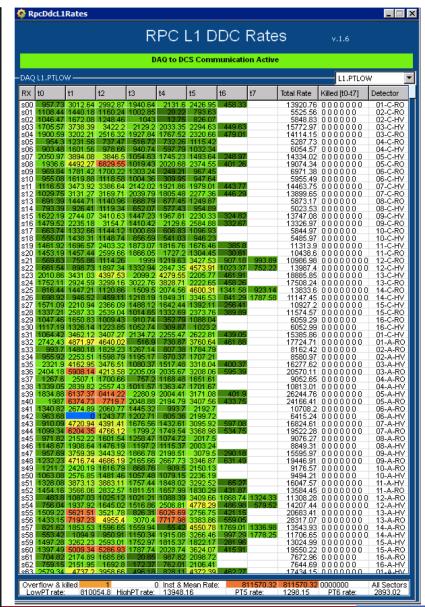
TDAQ Week September 12th 2018

Claudio Luci

SAPIENZA Università di Roma &

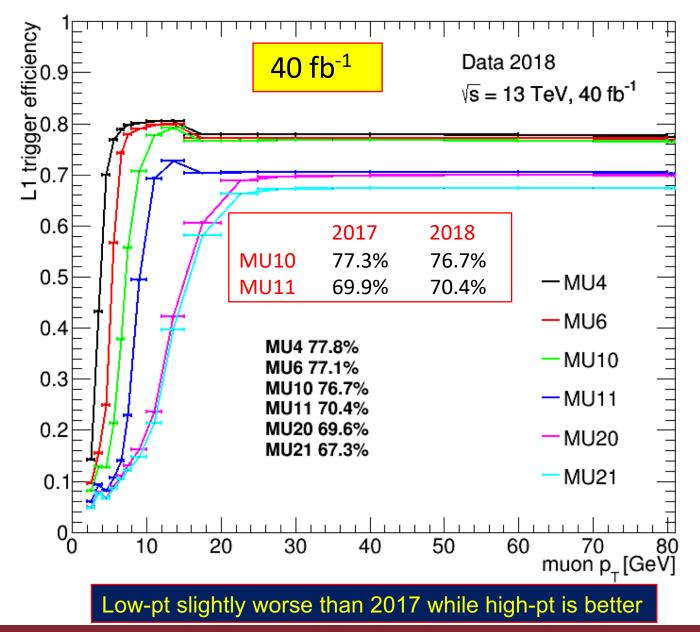
On behalf of the level-1 RPC trigger team

- Trigger hardware status
- Trigger efficiency
- Detector performance studies
- BME trigger efficiency
- New resynch manager
- Rod stopless removal
- Conclusion

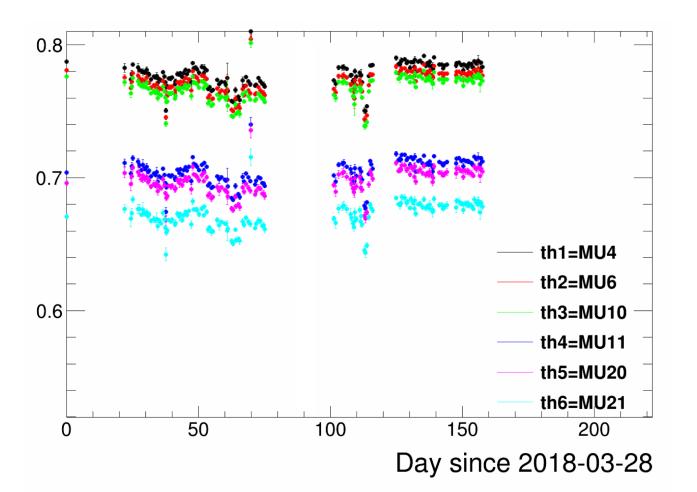


Trigger hardware status

- All pads are currently working (with a few minor exceptions)
- Points to be addressed during next TS2
 - check pad s04_t6_low that is not sending data
 - Check pad s39_t6_low that was not sending data (but now it works)
 - Check splitter s62_t0 that seems to be off.
 - Check Vpad of s44_t6 that is unbalanced with respect to the other pad
 - check Vpd of s42_t1 that has a "short" on the camber side
- Sector 0 was not working over the week end
 - eventually it was traced down to a wrong parameter in the SL initialization file
 - but we found out that the spare is not really a "spare". To be followed up.



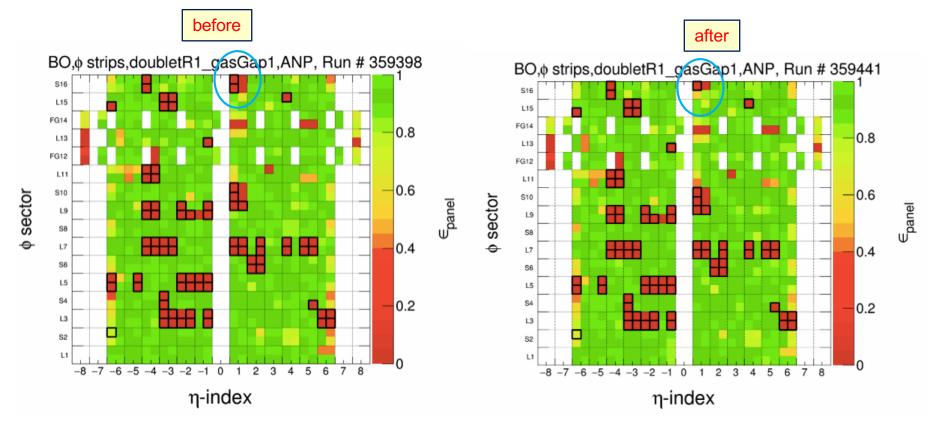
2018 trigger efficiency



INFN

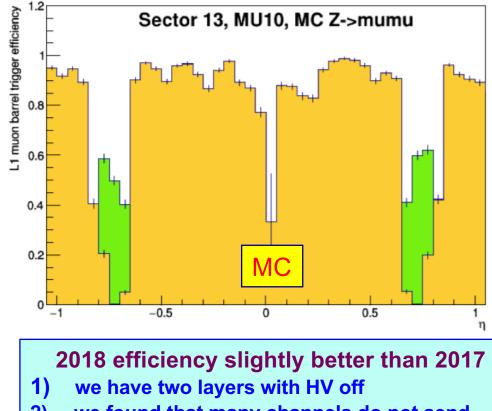
2018 trigger efficiency versus time

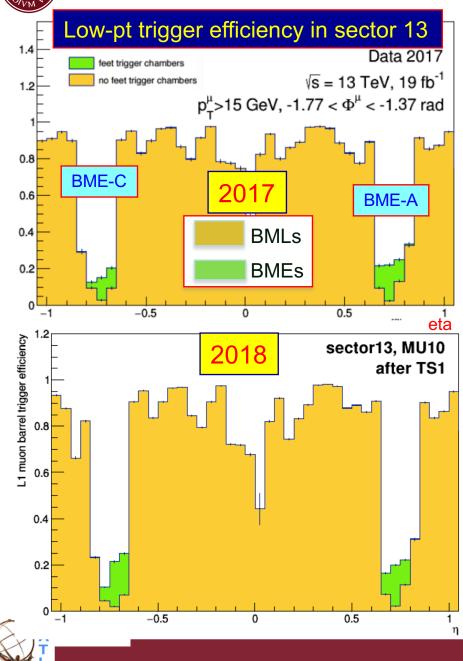
- Trigger efficiency has been fairly stable over the year, in particular in last two months.
- Some work has been done during TS1 to recover detector problems



INFN

Tools to monitor detector efficiency


- We have tools to monitor detector efficiencies run by run and to correlate them with the DCS detector defects
- The tools are now maintained and improved by USTC people.
- As an example I show the gas gap efficiency before and after a HV cable reconnection in the cavern


2) we found that many channels do not send any signals, either because the FE is not working or because connectors are off.

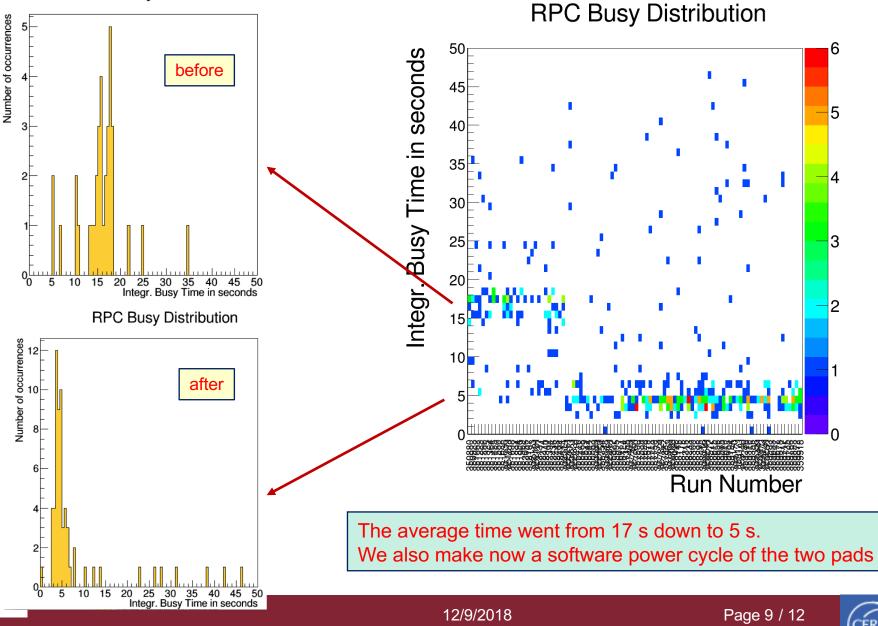
Trigger is working as expected

- 1) Now we are using 2/4 coincidence
- 2) More checks during LS2

INFN

Resynch manager status at last TDAQ week

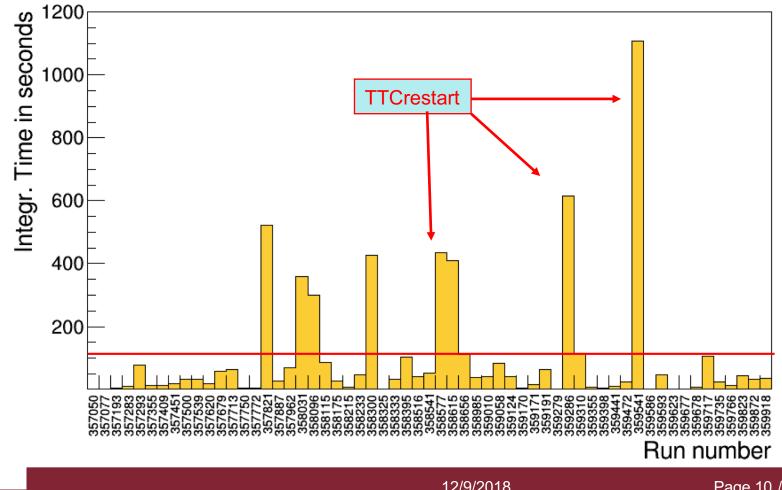
- We have one RCD resynch manager per side (A and C). It has been deployed just in time before the first stable beam run and it has been working since then;
- At the moment it reproduces the same features we had last year, that is:
 - ROD resynchronization
 - trigger tower resynchronization (that takes about 20 seconds)
- The tool proved to be reliable enough and now we want to do better:
- We would like to have a tower resyncs in two steps:
 - 1) we do a pad initialization with a power cycle (this will be new) while the run is ongoing (so we do not waste beam time);
 - 2) we ask for a trigger hold, we reset pad and CM fifos, we resynchronise pad and SL and we release the trigger. It should take only a few seconds.
 - We need some more tests in the combined partition and we will be ready to deploy it.
- We need a better protection against LV failures. We introduced already a mechanism protection against multiply towers resynch on the same canbus chain, but we need to do better.
- The two steps tower resynch will allow a better handling of the rod removal
- We have to update the shifter assistant rules since the messages written in ERS are different from the previous ones.



Tower resynch in two steps

INFN

RPC Busy Distribution



RPC busy time versus run number

- In most of the runs the RPC induced busy time is less than 100 s.
- Unfortunately sometimes we have a ROD stopless removals where we need a TTCrestart (~300 s) to reinclude the ROD

ROD removal issue

In May we found the "smoking gun", that is the reason causing the ROD removal. Let's look at the sector logic dump:

TXRX0: TXRX2: TXRX4: TXRX6: TRIG: SERDES: BOARD is	into into into into s busy EB	EB, EB, EB, EB, EB, KILL	E, no E, no E, no E, no E, no FIFO	bt busy bt busy BUSY	PADBUS	Y MASK	PADMASK		into into into	EB, EB, TX EB,	E, E, (RX7: E,	not not not	busy, busy, busy, EB, busy, busy,	, , E, not busy, masked padmasked ,
TXRX0: TXRX1: TXRX2: TXRX3: TXRX4: TXRX5: TXRX6: TXRX6: TXRX7: TRIG :	1 1 1 1 1 0 1	0 0 0 0 0 0 0 0	e e e e e e e e e	0 0 0 0 0 0 0	0 0 0 0 0 1 0 0							Without doing a power cycle of the bad tower the problem does not go away; that's why it is useless to do a TTC restart to reinclude the ROD before doing the power cycle.		
L1BC : SERDES: SL :		0 0 0	E E NE	0 0	0 0 0	0 0 0	0 0 0	0 0 fifo bu	sy thr	resho	olds			

- The "last busy" should be related to some fifo busy in the low-pt pad; it is recognized by the SL firmware but the tower is not killed and the busy "propagates" upward till the ROD.
- We need to check if the SL firmware can handle these events and kill the tower
- Another possible solution (to be implemented): we could "kill" the tower in the ROD via software emulating the SL, so the ROD will not be removed.
- Then the resynch manager will reinclude the tower.
- Top priority: deploy a rod stopless recovery in order to avoid a TTCrestart. The code is ready and will be tested this week.

Conclusions

- Smooth 2018 data taking, except many calls due to rod stopless removals.
- The trigger hardware is fully working.
- Trigger efficiency is similar to 2017 and have been stable through the year.
- BME trigger efficiency is not as good as expected, more work is needed.
- Offline work to study detector performances and trigger efficiencies by a new team from USTC.
- New resynch manager available since beginning of data taking. New tower resynch procedure reduced significantly the time needed for a tower resynch and improved trigger reliability.
- Most urgent problem to solve: rod stopless removal. Most likely after TS2 we will have a rod stopless recovery procedure.
- I have not mentioned other works we are doing on the online software and tools, mainly aiming at run3 data taking.

