
Network configuration 

management at CERN
Arkadiy Shevrikuko

Stefan Stancu

10/8/2018 1



Outline

• Network overview

• Current solution: cfmgr

• Overview of open-source platforms

• Evolution plan

10/8/2018 2



Network at CERN
• Around 4,4 k network devices

• Multi-vendor network (CERN procures equipment with open call for tenders)

• Specific configuration for each environment.

10/8/2018 3

400 routers

4000 switches



Network configuration automation 

workflow at CERN

10/8/2018 4

LanDB

CFMGR



CFMGR – configuration 

management tool

10/8/2018 5



What is cfmgr?
• Perl-based command-line tool

• Helps to ensure consistent configuration for the network
• Uses central DB as a source of truth

• Features:
• Multi-vendor support

• Supports multiple operations
• Basic configuration management (load, align)

• Automatic configuration of ACLs and PoE

• Large scale firmware management

• etc…

• Integration with Spectrum CA
• Sends cron job status notifications

10/8/2018 6



CFMGR architecture

10/8/2018 7



Evolution motivation
• Need to support a new router platform

• different configuration workflow

• Decrease in popularity of Perl
• Most network automation libraries (vendor or open-

source) use Python

• Large code base with non-uniform/outdated coding 
practices

• No clear separation between different modules of 
the system

10/8/2018 8



Open-source automation solutions

10/8/2018 9



Network automation stack

10/8/2018 10

• A network automation stack comprises 
multiple layers:

• Orchestration: triggering the action of 
reconfiguring network devices

• Model: device independent network 
configuration data

• Driver and device Interface: translate 
the model to the appropriate device 
specific format and enforce it on the 
device



N.A.P.A.L.M.
• N.A.P.A.L.M. (Network Automation and Programmability Abstraction Layer with Multivendor 

support) 
• Python library that implements a set of functions to interact with different network device Operating Systems using a unified API.

• N.A.P.A.L.M. API covers two aspects:
• Configuration management

• Getters (getting information from the device)

10/8/2018 11



• Python-based tool

• All orchestration is based 
on playbooks: programs, 
written in human readable 
language

• Generates configuration 
using template language 
(jinja2) and yaml data files

• No need to install 
additional software on the 
network devices

1210/8/2018

• For every device type, 
vendor, generation 
separate set of playbooks 
should be written

• Only one node controls 
whole network, which can 
cause concurrency issues 
during multiprocessing 
operations

• Simple set of operations 
supported



• Master-slave 

architecture

• Works over SSH in 

“headless” mode

• Provide layer of 

abstraction over 

N.A.P.A.L.M.

1310/8/2018

• Generation of the 
configuration using 
templates

• Python-based

• Reactive behaviour

• Scalable architecture

• Supports ACL 
generation out of the 
box



• Python based.

• StackStorm is a 
IFTTT(if-this-then-
that) orchestration 
platform

• There are basic 
workflows for network 
configuration based 
on N.A.P.A.L.M.

• No multi-vendor 
support

• Was created to 
orchestrate servers, 
but not real network 
devices.

• N.A.P.A.L.M. is the 
main source of 
network device 
automation

1410/8/2018



Open-source platform applicability

• There is no perfect automation platform 
which can cover full network automation 
stack.
• All network configuration capabilities are 

build on top of N.A.P.A.L.M.

• Some of them have scalability issues

• Lack of multi-vendor support

• Generation of the configuration is still our 
duty

• Configuration models are vendor specific

• Partial cover of configuration generation with 
OpenConfig

1510/8/2018



Evolution plan

10/8/2018 16



CFMGR – current state

10/8/2018 17



Evolution plan (1)

N.A.P.A.L.M.

10/8/2018 18

Python libraries, provided by vendors

Not covered by any automation 
platform. Should be developed



10/8/2018 19

Configuration generator should 

be created using Python and 

templates (eventually) for creating 

device specific configuration from 

generic one

Reuse CFMGR logic for 

creating general configuration 

in universal format (YAML, 

XML, JSON)

Use N.A.P.A.L.M. for diff 

operation and interaction 

with the network device

Evolution plan (2)



Evolution plan (3)
• Decouple concerns:

• Configuration generation: in-house

• Generate vendor independent configuration (Perl 
Python)

• Gradually use REST interface for retrieving database 
information

• Generate vendor specific configuration (use XSD/YANG 
schemas if available)

• Configuration enforcement

• Use N.A.P.A.L.M. and vendor libraries (Python)

10/8/2018 20



Evolution plan (4)
• Transition phase, need Perl – Python interaction

• Use ‘system’ to call full programs
• Structured input/output data (JSON and/or YAML)

• Proxy server for communicating to devices:
• Expose methods via XML-RPC

• Start with new vendor support
• Back-port to vendors still in production once the platform 

becomes complete

10/8/2018 21



Timeline

Early 2019:

NAPALM driver and 

vendor specific 

configuration 

generator. Support 

of Juniper 

configuration 

workflow

Autumn 2018:

Beginning of the 

development.

End of 2019:

Python 

implementation 

of core vendor 

independent 

configuration 

elements

2020+

Full Python-based 

configuration 

generation

Additional features 

(e.g. VLANs) 

Integrate other 

vendors



Summary
 Network configuration automation is a must

 Due to the scale and diversity of CERN’s networks

 Today there is no commercial or open-source product, capable of replacing cfmgr

 We are evolving the tool in order to leverage open-source tools with multi-vendor 
support:

 Faster and easier integration of the new vendors

 Easier maintenance of the tool

 Faster implementation of new features

 New calls for tender will most likely require programmatic configuration APIs

10/8/2018 23



Questions?

10/8/2018 24



10/8/2018 25



Things to improve
• Make use of open-source libraries for 

automation and integrate them to the existing 
system

• Switch to modern programming language

• Integrate vendor specific APIs for generation of 
the configuration

• Clear border between different modules of the 
cfmgr

10/8/2018 26



Update plan

• Different parts of cfmgr will be replaced with the 
new ones
• Python-based modules which are going to interact 

with Perl cfmgr using XML RPC mechanism

• Initial plan is to have support only for new 
vendors (Juniper)
• Once architecture is clear and robust – implement 

support for other vendors

10/8/2018 27



Update plan
• Use NAPALM to organize communication between cfmgr

and network device
• Using RPC calls from perl to python

• Generation of the configuration
• Using XSD or yang schemas provided by vendors, to generate 

appropriate classes

• Convert class based configuration to text version

• Replacement of the platform, which communicates with 
LANDB
• Rest API is available for deriving required data from LANDB

10/8/2018 28


