

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.

Cristian Pira

ARIES WP 15.2 progress

ARIES 1st Annual Meeting, 22-25 May 2018, Riga

Tumbling Batch Log

 In order to identify the right treatment conditions tests on similar samples were done during December and January

- On 25/02, during the treatment of the ARIES samples a screw came unscrew and damaged the surface with deep pits and scratches
- On 12/O3 CERN dispatched 6 samples to Legnaro (L4 to L9) with the same name on the back side as the original ones
- On 30/03 LNL dispatched 3 treated samples to STFC (L4, L5 and L6)

4. ARIES Samples Tumbling Set Up

- Samples keeped in a sample holder to prevent bending
- Two different media used:

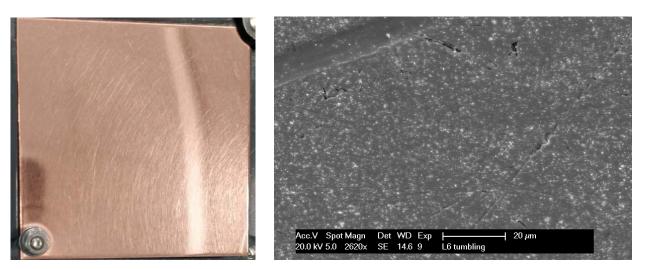
1. Allumina embedded in ureic resin

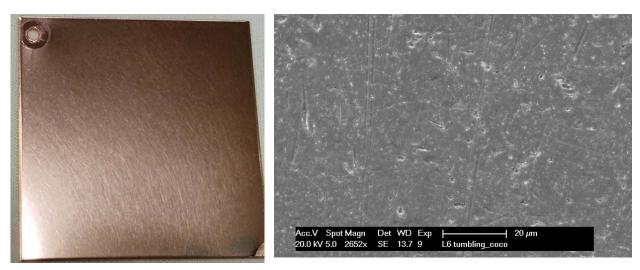
2. Coconut powders

4. ARIES Samples Tumbling Set Up

3. Tumbling Procedure

- **Degreasing:** NGL 1740 bath 2 hours \rightarrow 3' ultra-sonic ON at start and again 3' min ultra-sonic ON before end
- **Rinsing with water**: demineralized water for about 1 min
- **Polishing:** Tumbling with Alumina embedded media and Roadastel30 bath
- **Rinsing with water**: demineralized water for about 1 min
- Polishing: Tumbling with Coconut powders media
- **Degreasing**: Rodastel bath 2 hours \rightarrow 3' ultra-sonic ON at start and again 3' min ultra-sonic ON before end
- **Rinsing with water**: demineralized water for about 1 min
- **Passivation:** sulfamic acid (H₃NO₃S, 5 g/l) for about 1'
- **Rinsing with water**: demineralized water for about 30s
- **Spaying with alcohol:** ethyl alcohol to enhance drying
- Drying with N₂.
- **Packing** in wafer box and then in plastic bag under N₂


Results

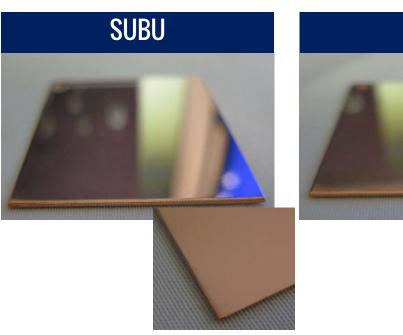

Tumbling with alumina cones

- Time: 21 hours
- Process stop every 2 hours for samples check
- Total etching: 1,1 $\mu \textbf{m}$
- Ra: 29 ± 11 nm (Initial Ra: 127 ± 26 nm)

Tumbling with cononut powders

- Time: 17 hours
- Process stop every 2 hours for samples check
- Total etching: 0,5 μm
- Ra: 48 ± 13 nm
- Less shiny and less scratched

Surface Characterization



Optical inspection

• Lamination texture

- Mirror like surface
- Reflectivity 65 ± 1 %

- Mirror like surface
- Texture due to oxigen evolution

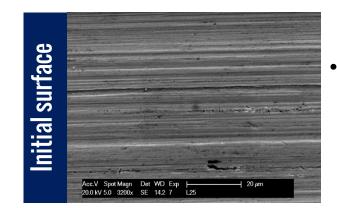
EP

• Reflectivity 64 ± 1 %

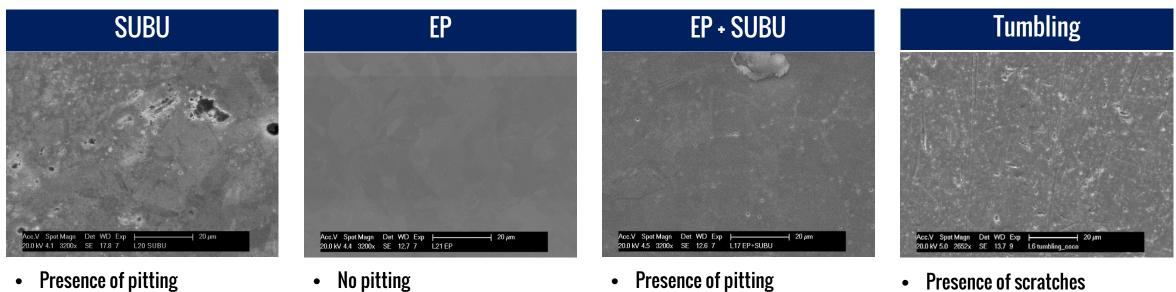
- Mirror like surface
- Texture due to oxigen evolution reduceded by SUBU

EP + SUBU

• Reflectivity 66 ± 1 %



- Shining surface
- Small visible scratches on surface
- Reflectivity 52 ± 1 %



SEM Characterization

Lamination texture

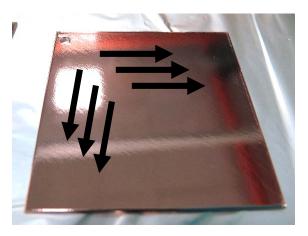
Presence of pitting ٠

• No pitting

- **Presence of scratches** •
- Inclusion of media •

Roughness

Polishing Treatment	Ra
Initial surface	130 ± 30 nm
SUBU5	48 ± 7 nm
EP	225 ± 80 nm
EP+SUBU5	115 ± 80 nm
Tumbling	44 ± 7 nm


y Ra M M M M x mean line L

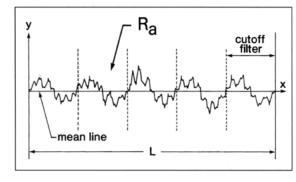
R_a is the arithmetic average deviation from the mean line within the assessment length (L).

$$x = L$$

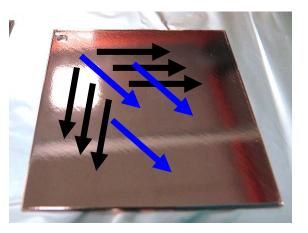
$$R_a = \frac{1}{L} \int |y| \, dx$$

$$x = 0$$

Scan length of 1 mm



Roughness


Polishing Treatment	Ra	Ra diagonal
Initial surface	130 ± 30 nm	
SUBU5	48 ± 7 nm	
EP	225 ± 80 nm	86 ± 14 nm
EP+SUBU5	115 ± 80 nm	59 ± 9 nm
Tumbling	44 ± 7 nm	

Scan length of 1 mm

R_a is the arithmetic average deviation from the mean line within the assessment length (L).

$$R_{a} = \frac{1}{L} \int |y| \, dx$$
$$x = 0$$

Conclusions

- Surface characterizations show that SUBU5 reduces roughness more than the other treatments
- SUBU5 produces pitting on the surface, also if used just for the etching of 5 microns (EP+SUBU)
- EP treated surface does not present pitting, but roughness is influenced by the dynamic of the process
- Tumbling reduces surface roughness at the same values of SUBU5
- Tumbling introduces small scratches on the surface and possible inclusions
- SC characterizations are necessary to evaluate the effect of polishing treatment on Nb thin film

