

Status of the RF testing devices: The HZB Quadrupole resonator

Oliver Kugeler 1st annual ARIES meeting Riga, May 22nd – 25th 2018 (work and slides by Sebastian Keckert, presented at IPAC2018)

SURFACE RESISTANCE MEASUREMENT

Calorimetric measurement: **RF-DC-compensation technique**

Pumping ports

Resolution: Minimum detectable R_s at low temperature

⇒ Resolution of heater power control loop negligible ⇒ Helium pressure fluctuations ± 80 µbar → ± 1.4 mK $R_{S,10 mT} = 0.35 n\Omega$ $R_{S,120 mT} = 0.002 n\Omega$ Highest value at low field, decreases quadratically with field

Field limits

- \Rightarrow Quench limit of QPR observed at about 120 mT
- \Rightarrow Calorimetric measurement limited due to RF heating, pulsed measurements up to 50 mT at 2.5 K

Accuracy: Limited by uncertainty of RF measurement

- \Rightarrow Overall accuracy of 6.5 %
- \Rightarrow Problems with 1.285 GHz mode

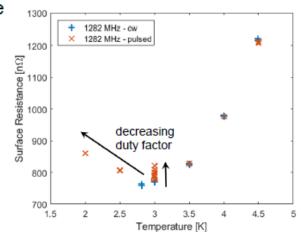
Issues observed during operation at the third quadrupole mode

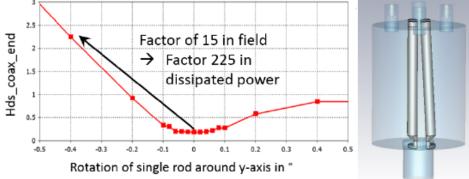
 \Rightarrow Very high residual resistance, scaling with frequency stronger than quadratic

⇒ Pulsed RF: R_S(T) rises with decreasing duty factor at low temperatures Simultaneous excitation of neighboring dipole mode

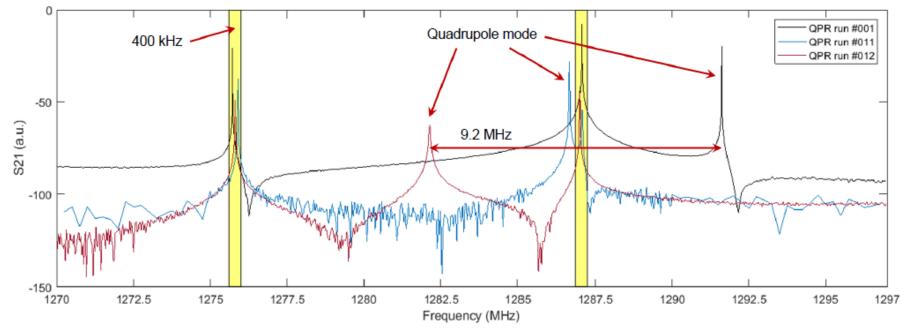
Excluded reasons

- \Rightarrow Multipacting \rightarrow observed but processable
- \Rightarrow Heater control loop \rightarrow no frequency dependence
- \Rightarrow Q_{ext} \rightarrow cross-checked by critical field measurement

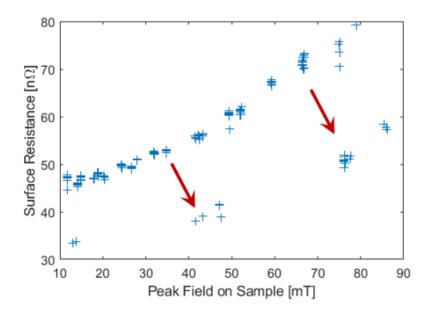

Explanation: Significant RF losses at nc bottom flange


- ⇒Asymmetric bending of rods due to Lorentz force detuning
- \Rightarrow Quadrupole symmetry broken \rightarrow less damping in coaxial gap
- \Rightarrow Significant RF losses at the nc bottom flange

Simulation: Asymmetric bending of rods

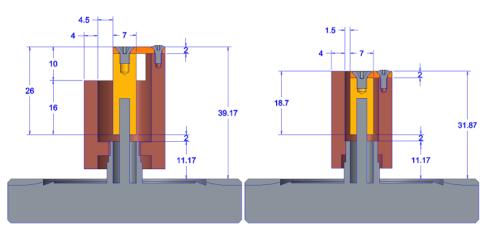

 \Rightarrow Integral field on bottom flange increases \Rightarrow Significant contribution of RF heating

Baseline: bias of 2.7 n
@ 433 MHz

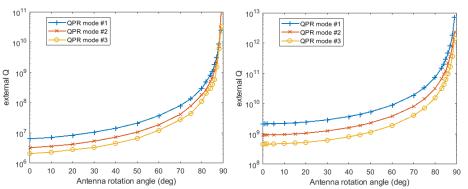

Measurement: Mode separation of third QPR mode can be critical QPR mode frequencies depend on distance between sample and rods

 \Rightarrow Q1: - 0.95 MHz / 100 μ m

 \Rightarrow Q3: about 2x as much \rightarrow up to 9.2 MHz of frequency shift observed (so far) neighboring "cavity" modes stay within 400 kHz (span of highlighted areas)


Observation of unstable coupling

- \Rightarrow "jumps" in R_s data
- \Rightarrow no change in P_{forw} or P_{refl}
- \Rightarrow P_{heater} and P_{diss} constant
- ⇒ high sensitivity to rotation and mechanical instability


Development of dedicated pickup antenna

- \Rightarrow reduced size of coupling loop
- \Rightarrow no change of feedthrough (CF40 rotatable)

optimized loop-coupler

initial loop-coupler

 $\ensuremath{\mathsf{Q}_{\text{ext}}}$ for all QPR modes as function of rotational angle

OUTLOOK

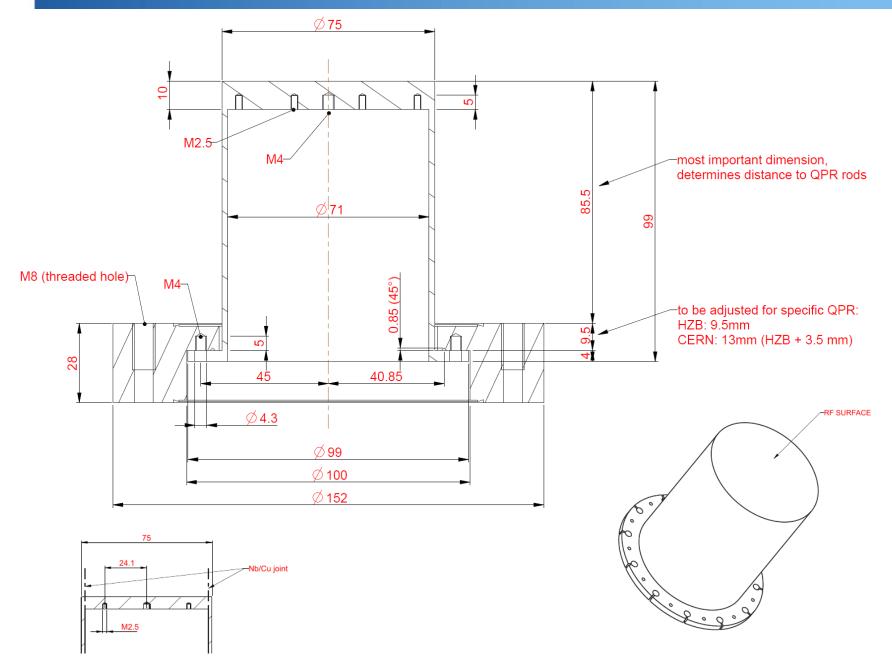
Ongoing upgrades of bottom flange

⇒ Copper and niobium coating of stainless steel are investigated

⇒ Implementation of bulk superconducting NbTi flange

Aspects for future design optimization

 \Rightarrow Improved separation of quadrupole and cavity modes


 \Rightarrow Reduced impact of broken symmetries on RF field distribution

PATH TO RF TESTS

- ordered 5 Nb samples, 5 OFHC samples for QPR (46k€)
- to be manufactured at Research Instruments
- delivery by September 2018
- to be accompanied by new ESR Dmitry Tikhonov as part of his industry secondment
- samples should undergo identical treatment to best ARIES samples
- Cu samples to be pre-treated at Legnaro
- Nb coating at Siegen and Daresbury
- RF Testing of same sample at HZB and CERN possible (use of suitable adapter)

- 1-2 tests in late 2018 possible
- 2019: commissioning of second VTS at HZB
 - => increased availability of cryogenics