Finite mass effects in Higgs boson plus jets production

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Gionata Luisoni

gionata.luisoni@cern.ch

Max Planck Institut für Physik

Seminario

Università Milano-Bicocca

01.03.2018

In collaboration with: S. Jones, M. Kerner; N.Greiner, S.Höche, M. Schönherr, J. C. Winter

Based on: arXiv: 1802.00349 ; arXiv: 1608.01195

MAX-PLANCK-GESELLSCHAFT

Outline

- Introduction and motivation
- H+1 jets at NLO with full top-quark mass dependence:
 - Process details
 - Numerical computation of 2-loop diagrams
- Phenomenological results:
 - Total cross section
 - Differential distributions
- Conclusions and outlook

<u>Credits</u>: Many thanks to <u>Mattias Kerner</u> and <u>Stephen Jones</u> for sharing material and for clarifications about the technical aspects of the 2-loop computation

The Higgs and the LHC: a success story!!

RESER

HANKS for

PHYSICS LETTERS B

3.8

SciVerse ScienceDirect

tp://www.elsevier.com/locate/physlett

It was 6 years ago...

... in the meanwhile

New differential results at 13 TeV

• Very recent results by ATLAS:

[ATLAS, 1802.04146]

Data become more and more precise, not only for inclusive quantities, but also for more exclusive and differential observables.

New differential results at 13 TeV

• First results on boosted Higgs by CMS: [CMS, 1709.05543, PRL 120 (2018) 071802]

"Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair"

Search for $H \rightarrow b\overline{b}$ with: $p_T > 450 \text{ GeV}$ $-2.5 < \eta < 2.5$ anti-k_T R = 0.8

Look for fat jet:

- Select leading p_T jet
- Apply soft-drop algorithm to groom the jet
- Reconstruct both Z and H

	Н	Ζ
Observed signal strength	$2.3^{+1.8}_{-1.6}$	$0.78^{+0.23}_{-0.19}$
Expected UL signal strength	< 3.3	
Observed UL signal strength	< 5.8	—
Expected significance	0.7σ	5.8σ
Observed significance	1.5σ	5.1σ

Higgs boson production channels

Higgs boson decay rates in the SM

- Several different decay channels:
 - Experimental analyses tuned to the different decay channels in order to optimize the signal to background ratio
 - The number of accompanying jets also plays an important role

Refined analyses and a very high theoretical accuracy to make the most out of the LHC data!

LHC is a tough environment for precision..

- QCD is omnipresent at LHC:
 - PDF
 - Hard scattering and loop corrections
 - Parton Shower
 - Hadronization
 - Further non perturbative effects

Master formula:

$$\sigma_{\mathbf{h_1h_2}\to\mathbf{X}} = \sum_{\mathbf{a},\mathbf{b}} \int_0^1 d\mathbf{x_1} d\mathbf{x_2} \frac{\mathbf{f_{h_1/a}}(\mathbf{x_1}, \mu_F^2) \mathbf{f_{h_2/b}}(\mathbf{x_2}, \mu_F^2)}{PDFs} \\ \frac{\rho_{\mathbf{b},\mathbf{b}} \times \mathbf{f_{a},\mathbf{b}} \times \mathbf{f_{a}}(\mathbf{x}_1, \mathbf{x}_2, \alpha_s(\mu_R^2), \frac{\mathbf{Q}^2}{\mu_F^2}, \frac{\mathbf{Q}^2}{\mu_R^2})}{POWer} \\ \frac{\rho_{\mathbf{b},\mathbf{b}}}{POWer} \\ \frac{\rho_{\mathbf{b}$$

All components need to determined with high accuracy!

Fixed order calculations for H + n Jets

• Partonic cross section: For Higgs+jets in gluon-fusion

$$\hat{\sigma}_{pp \to H+nJ} = \alpha_s^{2+n} \left[\sigma_0 + \alpha_s \sigma_1 + \alpha_s^2 \sigma_2 + \alpha_s^3 \sigma_3 + \mathcal{O}(\alpha_s^4) \right]$$

LO NLO NNLO N³LO

5

··· Jets

[I tried not to miss any contribution, my apologies for any omission]

[... and more (see later slide)]

Gluon fusion

• Theoretically gluon fusion has two important key aspects

1. It's loop induced (Born is a 1-loop process): huge increase in complexity

However:

- Since $m_{top} > m_{H}$ we can integrate out top quark and compute in an effective theory where the Born is a tree-level amplitude
- 2. It suffers from very large perturbative corrections:
- Huge NLO [O(100%)] and NNLO [O(20%)] effects!
- Now known at N³LO:

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger, '15-'16]

LO	$15.05 \pm 14.8\%$
NLO	$38.2 \pm 16.6\%$
NNLO	$45.1\pm8.8\%$
N3LO	$45.2\pm1.9\%$

σ [pb]

Gluon fusion

- LHC Higgs results allowed to exclude a 4th SM-like generation
- New physics in the Higgs sector could however still hide in the transverse momentum tail. How to nail this down?
- Facts to consider:
 - Higher order corrections are particularly **sizable** in Higgs boson production in gluon-gluon fusion (also in association with jets)
 - For a precise determination of the most important observables (e.g. the Higgs transverse momentum spectrum) a good control over higher multiplicities is relevant
 - LHC Run II is collecting data very fast. This will soon allow for precise Higgs boson studies at 13 TeV
 - > What are the **dominant effects**: higher order corrections or mass effects?
 - How reliable are effective field theory results, when do they break down and how are the different observables affected by mass corrections?

State of the art of the theoretical predictions

• Gluon fusion calculations in effective and full theory:

••• H+1j at NLO with full top-quark mass effects

01/03/2018 - Gionata Luisoni

• Leading order contributions (1-loop) to $pp \rightarrow \mathrm{H+1\,jet}$:

Channel	Diagrams	$\sigma_{\rm LO(\it p_{t,j}>30GeV)}$	$\sigma_{\rm LO(\it p_{t,j}>500GeV)}$
$gg \rightarrow Hg$		6.32 pb (74%)	1.92 x 10 ⁻³ pb (52%)
$qg \rightarrow Hq, \bar{q}g \rightarrow H\bar{q}$		2.21 pb (26%)	1.72 x 10 ⁻³ pb (47%)
$q\bar{q} \rightarrow Hg$	000000	0.04 pb (< 1%)	0.04 x 10 ⁻³ pb (1%)
	Tot:	8.56 pb	3.68 x 10 ⁻³ pb

• Computed using analytical implementation of the amplitudes [Baur, Glover 89]

• Real radiation corrections (1-loop):

Generated using GoSam

• Upgraded GoSam generates <u>quadruple precision</u> copy of the code to rescue on-the-fly unstable point with Ninja [Cullen, v. Deurzen, Greiner, Heinrich, Mastrolia, Mira

[Cullen, v. Deurzen, Greiner, Heinrich, Mastrolia, Mirabella, Ossola, Peraro, Schlenk, v. Soden-Fraunhofer, Tramontano, GL, '14] [Mastrolia, Mirabella, Peraro '12] [Peraro '15] occa [v. Deurzen, Mastrolia, Mirabella, Ossola, Peraro, GL, '14]

Seminario, Università Milano Bicocca

Process details

• Virtual corrections (2-loops):

Computed using 2-loop extension of GoSam, REDUZE and SecDec

[Greiner, Heinrich, Jahn, Jones, Kerner, Zirke][von Manteuffel, Studerus '12] [Binoth, Borowka, Carter, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke]

Analogous method used to compute HH production at NLO

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke]

Seminario, Università Milano Bicocca

Analytic results of 2-loop diagrams

• For planar integrals an analytic result exists

[Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov '16]

- Reduced to **125** Master Integrals
- Alphabet with 3 variables, 49 letters which contain 13 square roots
- Non elliptic master integrals in terms of Log and Li₂ up to weight 2
- Weight 3 and 4 expressed in form of 1-fold integrals
- 2 sectors contain elliptic functions computed as iterated integrals over elliptic kernel $(k_2+p_1)^2$

> First analytic computation of Feynman integrals for 4-point multiscale amplitudes involving elliptic functions

- Decompose amplitude into form factors:
 - Gluon channel

 $\mathcal{M} = \epsilon_{\mu}(p_1)\epsilon_{\nu}(p_2)\epsilon_{\rho}(p_3)\mathcal{M}^{\mu\nu\rho}$

[Glover, Frellesvig '17]

where:
$$\begin{split} \mathcal{M}^{\mu\nu\rho} = & F_{212}(s\,g^{\mu\nu} - 2p_2^{\mu}p_1^{\nu})(u\,p_1^{\rho} - t\,p_2^{\rho})/(2t) \\ & + F_{332}(u\,g^{\nu\rho} - 2p_3^{\nu}p_2^{\rho})(t\,p_2^{\mu} - s\,p_3^{\mu})/(2s) \\ & + F_{311}(t\,g^{\rho\mu} - 2p_1^{\rho}p_3^{\mu})(s\,p_3^{\nu} - u\,p_1^{\nu})/(2u) \\ & + F_{312}\left(g^{\mu\nu}(u\,p_1^{\rho} - t\,p_2^{\rho}) + g^{\nu\rho}(t\,p_2^{\mu} - s\,p_3^{\mu}) + g^{\rho\mu}(s\,p_3^{\nu} - u\,p_1^{\nu})\right) \end{split}$$

Quark channel

$$\mathcal{M} = F_q \left(\bar{u}(p_{\bar{q}}) \not\!\!\!p_g v(p_q) p_q \cdot \epsilon - \bar{u}(p_{\bar{q}}) \not\!\!\!\epsilon v(p_q) p_q \cdot p_g \right) \\ + F_{\bar{q}} \left(\bar{u}(p_{\bar{q}}) \not\!\!\!p_g v(p_q) p_{\bar{q}} \cdot \epsilon - \bar{u}(p_{\bar{q}}) \not\!\!\epsilon v(p_q) p_{\bar{q}} \cdot p_g \right)$$
[Gehrmann, Glover, Jaquier, Koukoutsakis '11]

- Full integration-by-part reduction obtained using **REDUZE**
 - In-house modifications:
 - Changed order of solving differential equations (sort by number of unreduced integrals)
 - Allow to specify list of required integrals (consider only equations containing these integrals)

- Unreduced amplitude: 3767 integrals
 - up to 3 inverse propagators for 7-propagator integrals
 - up to 4 inverse propagators for factorizing 6-propagator integrals
- Reduced amplitude: 458 integrals
 - up to 6 master integrals per sector
- Choose quasi-finite basis of MI
 - requires integrals in shifted dimension
 - requires reduction of integrals with 2 inverse propagators and 2 dots
- Reduction performed keeping fixed mass ratio: $\frac{m_{\rm H}^2}{m^2} = \frac{12}{22} \Leftrightarrow$

 - Size of reduced amplitude (symbolic d-dependent coeff.): 780 MB

 - > Does NOT allow inclusion of massive bottom quark and Higgs width

$$m_T^2$$
 23 $m_T = 1$

[von Manteuffel, Panzer, Schabinger '14]

[Tarasov '96; Lee '10]

3.055 GeV

 $m_{\rm H} = 125 \,{\rm GeV}$

- Loop integrals evaluated numerically using sector decomposition and the program SecDec-3.0 [Hepp '66; Denner, Roth '96, Binoth, Heinrich '00]
 - Method to factorize overlapping singularities:

- Factorization of poles in dim-regulator arepsilon and expansion in Laurent series
- Contour deformation (analytic continuation from Euclidian to physical region)

[Soper '00; Binoth et al. '05; Nagy, Soper '06; Borowka et al. '12]

[Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke]

- <u>Output</u>:
 - finite integrals at each order in arepsilon
 - can be integrated numerically

H+1j 2-loop amplitude written in terms of **22675** finite integrals

- Python version now also available: pySecDec
- [Borowka, Heinrich, Jahn, Jones, Kerner,

Schlenk, Zirke '17]

- on Github / uses python and FORM
- creates library of the integrand functions which can be linked to external code

• Loop integrals with r propagators and s inverse propagators can be written as:

$$I_{r,s}(s,t,m_H^2,m_T^2) = (M^2)^{-L\epsilon} (M^2)^{2L-r+s} I_{r,s}\left(\frac{s}{M^2},\frac{t}{M^2},\frac{m_H^2}{M^2},\frac{m_T^2}{M^2}\right)$$

and renormalized form factors as

$$F^{\text{virt}} = a^{3/2} \left(F^{(1)} + a \left(\frac{n_g}{2} \delta Z_A + \frac{3}{2} \delta Z_a \right) F^{(1)} + a \delta m_T^2 \mathcal{F}^{ct,(1)} + a F^{(2)} + \mathcal{O}(a^2) \right)$$

$$F^{(1)} = \left(\frac{\mu_R^2}{M^2} \right)^{\varepsilon} \left[b_0^{(1)} + b_1^{(1)} \varepsilon + b_2^{(1)} \varepsilon^2 + \mathcal{O}(\varepsilon^3) \right]$$

$$F^{ct,(1)} = \left(\frac{\mu_R^2}{M^2} \right)^{\varepsilon} \left[c_0^{(1)} + c_1^{(1)} \varepsilon + \mathcal{O}(\varepsilon^2) \right]$$

$$F^{(2)} = \left(\frac{\mu_R^2}{M^2} \right)^{2\varepsilon} \left[\frac{b_{-2}^{(2)}}{\varepsilon^2} + \frac{b_{-1}^{(2)}}{\varepsilon} + b_0^{(2)} + \mathcal{O}(\varepsilon) \right]$$

> Coefficients $b_i^{(n)}$, $c_i^{(n)}$ do not need to be recomputed for scale variation

> Compute each $b_i^{(n)}$ coefficient optimizing the accuracy needed from each integral

- Finite integrals evaluated using Quasi-Monte-Carlo integration
 - After sector decomposition and expansion in ε amplitude is written in terms of 22'675 finite integrals
 - <u>QMC rank-1 lattice rule</u>:

[See Dick, Kuo and Sloan for a review]

- Compute m different estimates $I_1 \dots I_m$ to estimate the error
- Error scales as $\mathcal{O}(n^{-1})$
- Generating vector constructed component-by-component [Nuyens '07]
- Dynamically set n for each integral, minimizing

$$T = \sum_{\text{integral } i} t_i + \lambda \left(\sigma^2 - \sum_i \sigma_i^2 \right) \qquad \qquad \sigma_i = c_i \cdot t_i^{-1}$$

 $\sigma_i = \text{error estimate (including coefficients in amplitude)}$ $\lambda = \text{Lagrange multiplier}$ $\sigma = \text{precision goal}$ → Computed on GPU [Li, Wang, Yan, Zhao '15]

Comparison between H+1j and HH virtual 2-loop amplitudes

	HJ production	HH production
#Form factors	4+2	2
Full reduction	✓	only planar
(quasi-) finite basis	✓	only planar
#Master integrals including crossings	458	327
#Master integrals neglecting crossings	120	215
#Integrals after sector decomposition and expansion in ϵ	22675	11244
Code size coefficients	~340 MB	~80 MB
Code size integrals	~330 MB	~580 MB
Compile time coefficients	~ 2 weeks	few days
Compile time integrals	~4 hours	~1-2 days
Time for linking the program	~3-4 days	few hours

[M.Kerner, RADCOR2017]

NLO calculation

• Separate integration over **phase space** for **B+I+RS** and **V**:

• B+I+RS:

- > 1-loop Born and real radiation matrix elements implemented in the POWHEG-BOX-V2 [Alioli, Nason, Oleari, Re '10]
- ➤ easy to interface
- > easy to be made public
- > straightforward matching to parton-shower

[Frixione, Nason, Oleari '07]

Further phenomenological developments (MiNLO, NNLOPS, ...)

[Hamilton, Nason, Oleari, Zanderighi '12; Hamilton, Nason, Re, Zanderighi '13]

• V:

> generated unweighted events based on differential LO cross section

- included additional p_T-dependent reweighting factor to sample sufficiently also at large transverse momenta
- Contributions combined at the level of the differential histograms

· Phenomenological results

01/03/2018 - Gionata Luisoni

Seminario, Università Milano Bicocca

Results

• Consider the following setup:

LHC @ 13 TeV:

scale: $\frac{H_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{t,H}^2} + \sum_i |p_{t,i}| \right)$, uncertainty with 7-pt variation

jets: anti-kt with R = 0.4, $p_{t,j} > 30 \text{ GeV}$

PDFs: PDF4LHC15_nlo_30_pdfas

- We compare three different computations
 - Higgs Effective Field Theory (HEFT):

$$d\sigma_{\rm NLO}^{\rm HEFT} = \int dP S_2 \left(d\sigma_{\rm B}^{\rm HEFT} + d\sigma_{\rm V}^{\rm HEFT} \right) + \int dP S_3 \, d\sigma_{\rm R}^{\rm HEFT}$$

• Full Theory approximated (FT_{approx}):

$$d\sigma_{\rm NLO}^{\rm FT_{approx}} = \int dP S_2 \left(d\sigma_{\rm B}^{\rm Full} + \frac{d\sigma_{\rm B}^{\rm Full}}{d\sigma_{\rm B}^{\rm HEFT}} \, d\sigma_{\rm V}^{\rm HEFT} \right) + \int dP S_3 \, d\sigma_{\rm R}^{\rm Full}$$

• Full theory (Full)

$$\mathrm{d}\sigma_{\mathrm{NLO}}^{\mathrm{Full}} = \int \mathrm{d}PS_2 \left(\mathrm{d}\sigma_{\mathrm{B}}^{\mathrm{Full}} + \mathrm{d}\sigma_{\mathrm{V}}^{\mathrm{Full}} \right) + \int \mathrm{d}PS_3 \,\mathrm{d}\sigma_{\mathrm{R}}^{\mathrm{Full}}$$

Seminario, Università Milano Bicocca

Results: total cross section

Theory	LO [pb]	NLO [pb]
HEFT:	$\sigma_{\rm LO} = 8.22^{+3.17}_{-2.15}$	$\sigma_{\rm NLO} = 14.63^{+3.30}_{-2.54}$
$\mathrm{FT}_{\mathrm{approx}}$:	$\sigma_{\rm LO} = 8.57^{+3.31}_{-2.24}$	$\sigma_{\rm NLO} = 15.07^{+2.89}_{-2.54}$
Full:	$\sigma_{\rm LO} = 8.57^{+3.31}_{-2.24}$	$\sigma_{\rm NLO} = 16.01^{+1.59}_{-3.73}$

- Top-quark mass effects: LO: + 4.3% NLO: + 9% (+ 6% compared with FT_{approx})
- However for inclusive cross section non-negligible top-bottom interference for H+1 jet production: Total inclusive cross section with gluon fusion cuts at 13 TeV H+1 jet H+2 jets At LO:

10

H+3 jets

Results: total cross section

Theory	LO [pb]	NLO [pb]
HEFT:	$\sigma_{\rm LO} = 8.22^{+3.17}_{-2.15}$	$\sigma_{\rm NLO} = 14.63^{+3.30}_{-2.54}$
$\mathrm{FT}_{\mathrm{approx}}$:	$\sigma_{\rm LO} = 8.57^{+3.31}_{-2.24}$	$\sigma_{\rm NLO} = 15.07^{+2.89}_{-2.54}$
Full:	$\sigma_{\rm LO} = 8.57^{+3.31}_{-2.24}$	$\sigma_{\rm NLO} = 16.01^{+1.59}_{-3.73}$

- Top-quark mass effects: LO: + 4.3% NLO: + 9% (+ 6% compared with FT_{approx})
- However for inclusive cross section non-negligible top-bottom interference for H+1 jet production:

At NLO:

Results: Higgs p_T spectrum

- Full theory and HEFT start deviating substantially for $p_T > 200 \text{ GeV}$
- Above 150 GeV stable K-factor (peculiar to this scale choice?)
- Scale uncertainty slightly reduced compared to FT_{approx}
- Full virtual gives +8% correction w.r.t. HEFT virtual

[Broad agreement with observations of Lindert, Kudashkin, Melnikov, Wever '18]

Higgs transverse momentum spectrum at 13 TeV

• Importance of H+2j and H+3j contributions in Higgs p_T spectrum:

Higgs transverse momentum spectrum at 13 TeV

• Importance of H+2j and H+3j contributions in Higgs p_T spectrum:

Higgs transverse momentum spectrum at 13 TeV

 Ratios of successive differential cross sections:

$$R_n(O) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}O} (\mathrm{H} + n \,\mathrm{jets})}{\frac{\mathrm{d}\sigma}{\mathrm{d}O} (\mathrm{H} + (n-1) \,\mathrm{jets})}$$

- suggests that the different transverse momentum scaling of effective and full theory also holds for higher multiplicities
- relative importance of higher multiplicities remains stable under mass corrections

Transverse momentum scaling for large p_T

Interludio: Effective vs. Full theory scaling

- Breakdown of effective theory can be understood comparing the high energy limit of a pointlike ggH interaction with that of a loop-mediated one:
 - Consider the transverse momentum behaviour of the g*g* --> H amplitude (i.e. when gluons are off shell) [Catani, Ciafaloni, Hautmann, '91] [Hautmann, '02] [Pasechnik, Teryaev, Szczurek, '06]

Transverse momenta can reach kinematic limit given by CM energy

Contribution from large transverse momenta suppressed by massive quark loop

$$\hat{\sigma} \underset{\hat{s} \to \infty}{\sim} \begin{cases} \sum_{k=1}^{\infty} \alpha_s^k \ln^{2k-1} \left(\frac{\hat{s}}{m_H^2}\right) & \text{pointlike: } m_t \to \infty \\ \\ \sum_{k=1}^{\infty} \alpha_s^k \ln^{k-1} \left(\frac{\hat{s}}{m_H^2}\right) & \text{resolved: finite } m_t \end{cases}$$

Corresponding scaling in Higgs p_T computed recently:

 \blacktriangleright as $p_{T,H} \rightarrow \infty$ differential cross section (in p_T^2):

drops like $\,(p_{T,\,H}^2)^{-1}$

[Forte Muselli, '15]

[Caola, Forte, Marzani, Muselli, Vita, '16]

[Marzani, Ball, Del Duca, Forte, Vicini, '08]

drops like
$$(p_{T,\,H}^2)^{-2}$$

Previous LO analysis:

• Effective theory starts to break down at about $p_{T, H} \approx 200 \text{ GeV}$ and NLO corrections start to become subdominant compared to mass effects.

• Define
$$R_{m_{t,b}}(O) \equiv \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}O}\Big|_{m_{t,i}}}{\frac{\mathrm{d}\sigma}{\mathrm{d}O}\Big|_{\mathrm{eff.}}}$$

then the rough scaling behavior from plots is given by

$$\frac{R_{m_{t,b}}(p_{T,H} = 1.0 \text{ TeV})}{R_{m_{t,b}}(p_{T,H} = 0.4 \text{ TeV})} \approx \frac{10\%}{60\%} = \frac{1}{6} = 0.167$$

while the high energy limit prediction is

$$\left(\frac{400 \text{ GeV}}{1000 \text{ GeV}}\right)^2 = \frac{4}{25} = 0.16$$

Very similar behavior for the three different multiplicities

New update at NLO:

Check on double logarithmic scale:

Conclusions and Outlook

- Presented new NLO QCD results on top-quark mass effects in H+1 jet production
 - NLO cross section is enhanced compared to HEFT (beware of bottom-quark effects)
 - Stable K-factor for transverse momentum distribution
 - Slight increase compared to NLO in FT_{approx}
- This opens the possibility for many further computations:
 - H+1 jet with full **top** and **bottom-quark** mass effects
 - Matching to parton shower / MiNLO / NNLOPS (POWHEG BOX, Geneva, ...)
 - Matching to analytical resummation
 - Inclusive Higgs production with full mass dependence at NNLO in QCD