LHeC IR design recap

E. Cruz-Alaniz

• Aim of the design: Focus one of the proton beams and collide it with the electron beam while the other proton beam bypasses the interaction.

- Installation on IR2: Original design $\beta^*=10$ m and L*=23 m.
- In order to reach Luminosity reach:
 - 10^{33} cm⁻²s⁻¹, β *=10 cm (LHeC CDR)
 - $10^{34} \text{ cm}^{-2}\text{s}^{-1}$, $\beta^*=5 \text{ cm}$ (Post LHeC CDR)

• Aim of the design: Focus one of the proton beams and collide it with the electron beam while the other proton beam bypasses the interaction.

- Installation on IR2: Original design $\beta^*=10$ m and L*=23 m.
- In order to reach Luminosity reach:
 - 10^{33} cm⁻²s⁻¹, β *=10 cm (LHeC CDR)
 - $10^{34} \text{ cm}^{-2}\text{s}^{-1}$, $\beta^*=5 \text{ cm}$ (Post LHeC CDR)

• Aim of the design: Focus one of the proton beams and collide it with the electron beam while the other proton beam bypasses the interaction.

- Installation on IR2: Original design $\beta^*=10$ m and L*=23 m.
- In order to reach Luminosity reach:
 - 10^{33} cm⁻²s⁻¹, β *=10 cm (LHeC CDR)
 - $10^{34} \text{ cm}^{-2}\text{s}^{-1}$, $\beta^*=5 \text{ cm}$ (Post LHeC CDR)
 - Move L* to 10 m to improve chromaticity correction $\frac{23}{05}$

Changes to the IR

• Installation of new quadrupoles of IT: Free-field regions for the non-colliding proton beam and the electron beam.

Name	Gradient	Length	Radius of	p1-p2	"Radius" of
	(T/m)	(m)	aperture	Separation	field-free aperture
			(mm)	(mm)	(mm)
Q1	187	9	22	63	40
Q_2	308	9	30	87	26
Q3	185	9	32	-	-

- Change dipole strength to direct beams to corresponding apertures.
- Limits on strengths of the quads and chromaticity correction.
- Following example of HL-LHC. Extend ATS scheme into IR2.
 - Pre-squeeze: $\beta^*=30$ cm
 - Squeeze: $\beta^*=10$ cm

Changes to the IR

• Installation of new quadrupoles of IT: Free-field regions for the non-colliding proton beam and the electron beam.

Name

Gradient

(T/m)

			(mm)	(mm)	
Q1	187	9	22	63	
Q_2	308	9	30	87	
Q3	185	9	32	-	

Length

(m)

Radius of

aperture

p1-p2

Separation

- Lifec CDR design 3. Russenschuck
- Change dipole strength to direct beams to corresponding apertures.
- Limits on strengths of the quads and chromaticity correction.
- Following example of HL-LHC. Extend ATS scheme into IR2.
 - Pre-squeeze: $\beta^*=30$ cm
 - Squeeze: $\beta^*=10$ cm

"Radius" of

field-free aperture

 $\frac{(mm)}{40}$ 26

Changes to the IR

• Installation of new quadrupoles of IT: Free-field regions for the non-colliding proton beam and the electron beam.

LHeC CDR design S. Russenschuck

Ī	Name	Gradient (T/m)	Length (m)	Radius of aperture (mm)	p1-p2 Separation (mm)	"Radius" of field-free aperture (mm)
	Q1 Q2 Q3	187 308 185	9 9 9	22 30 32	63 87 -	40 26

- Change dipole strength to direct beams to corresponding apertures.
- Limits on strengths of the quads and chromaticity correction.
- Following example of HL-LHC. Extend ATS scheme into IR2.
 - Pre-squeeze: β*=30 cm
 - Squeeze: β*=10 cm

Flexibility of the design

Explore flexibility of the design:

• Increase L*

- Advantages: Minimize synchrotron radiation
- **Disadvantages**: Increase chromatic aberrations
- Cases: L*=10-20 m and β * fixed at 10 cm.

• Minimize β*

- **Advantages**: Increase Luminosity (in particular $\beta^*=5$ cm)
- Disadvantages: Increase chromatic aberrations
- Cases: L*=5-10, 20 cm and L* fixed at 10 m.

• Optics works ok, study which cases are feasible in terms of chromaticity, SR and Dynamic Aperture

Flexibility of the design

Explore flexibility of the design:

• Increase L*

- Advantages: Minimize synchrotron radiation
- **Disadvantages**: Increase chromatic aberrations
- Cases: L*=10-20 m and β * fixed at 10 cm.

• Minimize β*

- **Advantages**: Increase Luminosity (in particular $\beta^*=5$ cm)
- **Disadvantages**: Increase chromatic aberrations
- Cases: L*=5-10, 20 cm and L* fixed at 10 m.

• Optics works ok, study which cases are feasible in terms of chromaticity, SR and Dynamic Aperture

Flexibility of the design

Explore flexibility of the design:

• Increase L*

- Advantages: Minimize synchrotron radiation
- **Disadvantages**: Increase chromatic aberrations
- Cases: L*=10-20 m and β^* fixed at 10 cm.

• Minimize β*

- **Advantages**: Increase Luminosity (in particular $\beta^*=5$ cm)
- **Disadvantages**: Increase chromatic aberrations
- Cases: L*=5-10, 20 cm and L* fixed at 10 m.

• Optics works ok, study which cases are feasible in terms of chromaticity, SR and Dynamic Aperture

Further Studies

• Chromaticity correction.

- Tried three different schemes: LHC-like (all families varying the same), LHeC-like (families varying independently), HL-LHC-like (strong/weak families).
- LHeC-like works the best, but has limit in L*=19 m and β *=8 cm.
- TO DO: Exploring again the HL-LHC like. So far I have a better result. Test it for different cases to see if DA improves.

Further Studies

• Chromaticity correction.

- Tried three different schemes: LHC-like (all families varying the same),
 LHeC-like (families varying independently), HL-LHC-like (strong/weak families).
- LHeC-like works the best, but has limit in L*=19 m and β *=8 cm.
- TO DO: Exploring again the HL-LHC like. So far I have a better result. Test it for different cases to see if DA improves.

• Synchrotron radiation:

- Original design with L*=10 m, β *=10 cm -> 49 kW
- Increasing L* -> 25 kW
- Minimizing aperture in quads -> 9 kW

- DA studies: 10⁵ turns, 60 seeds, 5 angles.
- Errors in the arcs but NOT in the new IRs: IR1, IR5 and IR2. (Error tables for IR1 and IR5 were on-going work at the time)

- DA looks good with L* up to 15 m, very similar than for 10 m. For minimizing β^* DA decays more rapidly.
- Case for $\beta^*=5$ cm looks challenging. Try with new chromatic correction.
- Up until now : $\beta^*=10$ cm L*=15 m looks the most feasible.
- TO DO: Repeat with error tables, start with IR1 and IR5. To give more complete information about feasible designs. 23/05/2018

- DA studies: 10⁵ turns, 60 seeds, 5 angles.
- Errors in the arcs but NOT in the new IRs: IR1, IR5 and IR2. (Error tables for IR1 and IR5 were on-going work at the time)

- DA looks good with L* up to 15 m, very similar than for 10 m. For minimizing β^* DA decays more rapidly.
- Case for $\beta^*=5$ cm looks challenging. Try with new chromatic correction.
- Up until now : $\beta^*=10$ cm L*=15 m looks the most feasible.
- TO DO: Repeat with error tables, start with IR1 and IR5. To give more complete information about feasible designs. 23/05/2018

- DA studies: 10⁵ turns, 60 seeds, 5 angles.
- Errors in the arcs but NOT in the new IRs: IR1, IR5 and IR2. (Error tables for IR1 and IR5 were on-going work at the time)

- DA looks good with L* up to 15 m, very similar than for 10 m. For minimizing β^* DA decays more rapidly.
- Case for $\beta^*=5$ cm looks challenging. Try with new chromatic correction.
- Up until now : $\beta^*=10$ cm L*=15 m looks the most feasible.
- TO DO: Repeat with error tables, start with IR1 and IR5. To give more complete information about feasible designs. 23/05/2018

- DA studies: 10⁵ turns, 60 seeds, 5 angles.
- Errors in the arcs but NOT in the new IRs: IR1, IR5 and IR2. (Error tables for IR1 and IR5 were on-going work at the time)

- DA looks good with L* up to 15 m, very similar than for 10 m. For minimizing β^* DA decays more rapidly.
- Case for $\beta^*=5$ cm looks challenging. Try with new chromatic correction.
- Up until now : $\beta^*=10$ cm L*=15 m looks the most feasible.
- TO DO: Repeat with error tables, start with IR1 and IR5. To give more complete information about feasible designs. 23/05/2018

- DA studies: 10⁵ turns, 60 seeds, 5 angles.
- Errors in the arcs but NOT in the new IRs: IR1, IR5 and IR2. (Error tables for IR1 and IR5 were on-going work at the time)

- DA looks good with L* up to 15 m, very similar than for 10 m. For minimizing β^* DA decays more rapidly.
- Case for $\beta^*=5$ cm looks challenging. Try with new chromatic correction.
- Up until now : $\beta^*=10$ cm L*=15 m looks the most feasible.
- TO DO: Repeat with error tables, start with IR1 and IR5. To give more complete information about feasible designs. 23/05/2018

- DA studies: 10⁵ turns, 60 seeds, 5 angles.
- Errors in the arcs but NOT in the new IRs: IR1, IR5 and IR2. (Error tables for IR1 and IR5 were on-going work at the time)

- DA looks good with L* up to 15 m, very similar than for 10 m. For minimizing β^* DA decays more rapidly.
- Case for $\beta^*=5$ cm looks challenging. Try with new chromatic correction.
- Up until now : $\beta^*=10$ cm L*=15 m looks the most feasible.
- TO DO: Repeat with error tables, start with IR1 and IR5. To give more complete information about feasible designs. 23/05/2018

- SR load-limits and distance between apertures
 - \rightarrow 1. Define minimum L*

- SR load-limits and distance between apertures
 - 1. Define minimum L*
 - 2. Once L* is defined, choose β^*
 - 3. Get optics (if there's not one yet)
 - 4. Run DA (errortables for magnets?) If optics/DA looks ok , lower β^* _____ If it doesn't, higher β^*

- SR load-limits and distance between apertures
 - 1. Define minimum L*
 - 2. Once L* is defined, choose β^*
 - 3. Get optics (if there's not one yet)
 - 4. Run DA (errortables for magnets?) If optics/DA looks ok , lower β^* ______ If it doesn't, higher β^*

Get min β* for that L* Achievable in terms of SR/magnet design, optics and DA

- SR load-limits and distance between apertures
 - Define minimum L*
 Once L* is defined, choose β*
 Get optics (if there's not one yet)
 Run DA (errortables for magnets?)
 If optics/DA looks ok , lower β*
 If it doesn't, higher β*
 Get min β* for that L*
 Achievable in terms of SR/magnet design, optics and DA
 - Suggestions?
- In the mid time. Work for workshop:
 - DA with IT errors in HL IRs (IR1 and IR5)
 - Explore new chromaticity correction
- $_{23/05/2018}$ Give more defined limits for L*, β * options.

- SR load-limits and distance between apertures
 - .. Define minimum L*
 - 2. Once L* is defined, choose β^*

Start with L*=15 m → Start with β^* =10 cm

Start with current design -> necessary apertures Magnet design (Brett) Back to optics -> Fulfil necessary apertures?

3. Get new optics (in progress)

4. Run DA (errortables for magnets?)

- In the mid time. Work for workshop:
 - DA with IT errors in HL IRs (IR1 and IR5)
 - Explore new chromaticity correction
 - Give more defined limits for L^* , β^* options.

DA studies

New chromaticity correction.
 Works for more cases (matched for β*=5 cm)
 DA for baseline case L*=10m and β*=10 cm looks worst

Min DA 16.7 σ vs 14 σ

- Check both options for each case.
- Useful for cases when LHeC correction non-possible

DA studies

- Errors in IR1 and IR5
- Using non-linear correctors in IR1 and IR5.

Get new values with updated optics.

See how it impacts on L*=15 m. (non-error case) loss of around 1.5σ Fixing L*=15 m to get results-> This will get updated with new triplet

DA studies

- Work for June
 - Updated DA for colliding beam 2 L*=15 m, β *=10 cm
 - Errors on the triplet IR1/IR5
 - Effect of non-linear correctors on DA
 - DA for non-colliding beam?
 - Alternative options?