MIXMAX and other RNG in higher dimensions

Part 1, MIXMAX

- Mixmax is a specific matrix

$$
\vec{x}^{\prime}=A \cdot \vec{x} \bmod 1
$$ realization of a chaotic dynamical matrix-recursive system:

* A is a specific matrix
$\left(\begin{array}{cccccccc}2 & 3 & 4 & 5 & \ldots & & N & 1 \\ 1 & 2 & 3 & 4 & \ldots & & N-1 & 1 \\ & & \ldots & & & & & \\ 1 & 1 & 1 & 1 & \ldots & 2 & 3+S & 1 \\ 1 & 1 & 1 & 1 & \ldots & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1\end{array}\right)$
* So, $x(t)=A^{t} x(0) \quad t=0,1,2,3,4, \ldots$
* It is defined on a N-dimensional real torus with periodic boundary conditions:

$$
x \in[0,1)
$$

Computer Realization

* We work with rational numbers:

$$
x_{i}=a_{i} / p
$$

* Then, the recursion is equivalent to

$$
\vec{x}^{\prime}=A \cdot \vec{x} \bmod 1 \longleftrightarrow a_{i}^{\prime}=\sum_{j=1}^{N} A_{i j} a_{j} \bmod p
$$

* The computer simulates the periodic, rational trajectories exactly.

Three parameter family

$$
A(N, s, m)=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & \ldots & 1 & 1 \\
1 & 2 & 1 & 1 & \ldots & 1 & 1 \\
1 & m+2+s & 2 & 1 & \ldots & 1 & 1 \\
1 & 2 m+2 & m+2 & 2 & \ldots & 1 & 1 \\
1 & 3 m+2 & 2 m+2 & m+2 & \ldots & 1 & 1 \\
1 & & \ldots & \ldots & & & \\
1 & (N-2) m+2 & (N-3) m+2 & (N-4) m+2 & \ldots & m+2 & 2
\end{array}\right)
$$

* For $\mathrm{m}=1$ it reduces to the old matrix
* It is still of the almost-band form
* The progression of the integers is arithmetic

Seems OK
but actually

Dual Lattice

* In the lattice formed by RNG output vectors we are interested in the largest distance between planes.
* This is equivalent to searching the shortest vector in the dual lattice defined by

$$
\wedge^{\star}=\left\{\mathbf{y} \in R^{* d} \quad \mid \mathbf{y} \cdot \mathbf{g}=n \in Z, \quad \mathbf{g} \in \wedge\right\}
$$

* In x-ray or electron beam crystallography the Laue condition for the reflected beam reads:
$\triangle \mathbf{k} \cdot \mathbf{x}=n, n \in Z$

regular lattice
or maybe some special irregular arrangement?

Best packings in higher dimensions

* The answer is known in 8 dimensions:

$$
\begin{gathered}
\text { (Maryna Viazovska, 2016) } \\
\Gamma_{8}=\left\{\left(x_{i}\right) \in \mathbb{Z}^{8}: \sum_{i} x_{i} \equiv 0(\bmod 4)\right\}
\end{gathered}
$$

* and in 24 dimensions, Leech lattice

$$
\Gamma_{24}=\frac{1}{\sqrt{8}}\left(\mp 3, \pm 1^{23}\right)
$$

* Each ball touches 196,560 others!!!

Conway (1968) determined the automorphism group of this lattice and discovered three new sporadic simple groups.

The short lattice vector problem

* There does NOT exist polynomial algorithm for finding the shortest lattice vector in a general lattice.
* Finding some short vector within some constant factor of the absolute shortest is possible, but the factor is $2^{\wedge} \mathrm{D}$
* There is a Gram-Schmidt type algorithm available by Lenstra-Lenstra-Lovász (LLL,1982), which is polynomialtime and OK performance.
* Another algorithm, with excellent results in dimensions up to a few hundred, is called Block Korkine Zolotarev (BKZ).

Linear relations in MIXMAX

* Generally, in the three parameter family:

$$
x_{i}^{(j)}-2 x_{i}^{(j+1)}+x_{i}^{(j+2)}-x_{i}^{(j+N+2)}-(m-1) x_{i}^{(j+N+1)}=0 \bmod 1 .
$$

* For the $\mathrm{N}=17, \mathrm{~m}=2^{\wedge} 36+1$ and $\mathrm{s}=0$, this produces a spectral index of $\sim 10^{\wedge}-8$ in dimensions between N and 2 N .
* Is $10^{\wedge}-8$ good or not good enough?

Apply hammer to the nail

* For L'Ecuyers combined MRG called MRG32k3a we have the short vector in the dual lattice:

$$
\begin{aligned}
& \mathbf{y}=\{-1,-1,0,0,0,3,0,0,1,-2,2,0,-1,-2,-1,2,0,1,0,1,-1,1, \\
& 0,-3,0,-2,0,0,1,0,0,0,1,1,0,0,-2,1,0,-1,1,0,0,1,0,1,1 \\
& 0,1,0,0,1,3,0,0,0,1,0,1,0,-1,0,-1,1,0,0,-1,-1,0,0,2,2 \text {, } \\
& 0,-2,-1,0,0,1,1,0,1,0,-1,1,-2,1,2,1,1,-1,0,0,0,0,0,0,1 \text {, } \\
& 0,-2,-1,0,0,1,1,0,0,1,-1,1,0,0,2,0,1,-1,0,1,-1,0,0,-1\} ;
\end{aligned}
$$

* MRG32k3a will produce incorrect results when integrating the function $f=\cos (2 \pi y \cdot x)$ where x is the consecutive output of 121 state iterations.

Monte-Carlo integration

* The c are Fourier coefficients in the expansion

$$
f(\mathbf{u})=\sum_{\mathbf{h} \in \mathbb{Z}^{\mathbf{s}}} c_{\mathbf{h}} \exp (i 2 \pi \mathbf{h} \cdot \mathbf{u})
$$

* Monte-Carlo integration:
we throw random vectors and evaluate the integral of a function in $\mathrm{R}^{\wedge} \mathrm{D}$ by the sum

$$
\frac{1}{n} \sum_{i=1 \ldots n} f\left(\mathbf{x}_{i}\right) \rightarrow c_{0}+\sum_{\mathbf{y} \in \wedge^{*}} c_{\mathbf{y}}
$$

* On the right-hand-side we have c 0 (the correct result) plus a sum over all vectors on the dual lattice.

Bounds on accuracy

* For a function which has all partial derivatives up to k times bounded by a common constant A,

$$
\left|f^{(k)}\right|<A
$$

* we have

$$
\left|c_{\mathbf{y}}\right|<\frac{A}{|\mathbf{y}|^{k}}<A l^{k}
$$

* and in fact in the average case the exponent is $\mathrm{D}^{*} \mathrm{k}$.
-Thank you!

Apply hammer to the nail

* For full-luxury RANLUX, a run of LLL and BKZ lattice reductions gives the shortest vector:
$\mathrm{y}=[3,-7,7,-3,0,-7,7,23,-4,11,-7,11,5,10,17,-4,7,3,-4,4,-14,-3$, $-2,8,14,0,-11,-12,15,10,-7,-16,-2,-10,-10,-12,8,-7,0,22,10,6$, $8,6,-19,-2,-4,-13,4,-1,16,-5,-3,1,4,-3,-9,-4,-14,9,-17,0,-1,4$, $4,14,-9,-3,-3,0,13,-8,11,14,-19,-13,-1,6,0,-3,-2,4,6,-6,-1,-2$, $1,-18,5,12,16,-22,-12,-7,-12,-15,7,6,-14,-9,-8,-7,2,1,-1,2,-2$, $-4,0,-9,-14,1,22,7,4,-3,-12,-7,5,4]$
in $D=120$ with length ~ 102.9, so that the spectral index is ~ 0.01
* RANLUX will produce incorrect results when integrating the function $f=\cos (2 \pi y . x)$ where x is any or all of components of the RANLUX state in 120 consecutive iterations.

