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Let us consider the model of the Lobachevsky plane realized in the
upper half-plane y > 0 of the complex plane z = x + iy ∈ C with
the Poincaré metric which is given by the line element

ds2 = dx2 + dy2

y2 = dz dz̄
(=z)2 , (2.1)

where z̄ is the complex conjugate of z and =z is the imaginary
part of z . The Lobachevsky plane is a surface of a constant
negative curvature, its Gaussian curvature is K = −1. This metric
has two well known properties: 1) it is invariant with respect to all
linear substitutions, which form the group g ∈ G of isometries of
the Lobachevsky plane:

w = g · z ≡
(
α β
γ δ

)
· z ≡ αz + β

γz + δ
, (2.2)

where α, β, γ, δ are real coefficients of the matrix g and the
determinant of g is positive, αδ − βγ > 0.

Hasmik Poghosyan YerPhI, Armenia
Artin Billiard Exponential Decay of Correlation Functions



Plan Artin Dynamical System with Quasi-Ergodic Trajectories Construction of Periodic Geodesic Trajectories

2) The geodesic lines are either semi-circles orthogonal to the real
axis or rays perpendicular to the real axis. The geodesic equation
has the form

d2x
dt2 −

2
y

dx
dt

dy
dt = 0 , d2y

dt2 + 1
y

(dx
dt

)2
− 1

y

(dy
dt

)2
= 0

and has two solutions

x(t)− x0 = r tanh (t) , y(t) = r
cosh(t) ← orthogonal semi-circles

x(t) = x0, y(t) = et ← perpendicular rays .

Here x0 ∈ (−∞,+∞), t ∈ (−∞,+∞) and r ∈ (0,∞). The points
on the geodesics curves move with a unit velocity ds

dt = 1.
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In order to construct a compact surface F on the Lobachevsky
plane, one can identify all points in the upper half of the plane
which are related to each other by the substitution (2.2) with the
integer coefficients and a unit determinant. These transformations
form a modular group d ∈ D. Thus we consider two points z and
w to be ”identical” if:

w = mz + n
pz + q , d =

(
m n
p q

)
, d ∈ D (2.3)

with integers m, n, p, q constrained by the condition mq − pn = 1.
The D is the discrete subgroup of the isometry transformations G
of (2.2) The identification creates a regular tessellation of the
Lobachevsky plane by congruent hyperbolic triangles in. The
Lobachevsky plane is covered by the infinite-order triangular tiling.
One of these triangles can be chosen as a fundamental region
(denoted by F).
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Inside the modular triangle F there is exactly one representative
among all equivalent points of the Lobachevsky plane with the
exception of the points on the triangle edges which are opposite to
each other. These points should be identified in order to form a
closed compact surface F̄ by ”gluing” the opposite edges of the
modular triangle together. On the figure above one can see the
pairs of points on the edges of the triangle which are identified.
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In order to describe the behavior of the geodesic trajectories on the
surface F̄ one can use the knowledge of the geodesic trajectories on the
whole Lobachevsky plane. Let us consider an arbitrary point (x , y) ∈ F
and the velocity vector ~v = (cos θ, sin θ). These are the coordinates of
the phase space (x , y , θ) ∈M, and they uniquely determine the geodesic
trajectory as the orthogonal circle K in the whole Lobachevsky plane. As
this trajectory ”hits” the edges of the fundamental region F and goes
outside of it, one should apply the modular transformation to that parts
of the circle K which lie outside of F in order to return them back to the
F . That algorithm will define the whole trajectory on F̄ for
t ∈ (−∞,+∞).
One should observe that this description of the trajectory on F̄ is
equivalent to the set of geodesic circles {K ′} which appear under the
action of the modular group on the initial circle K . One should join
together the parts of the geodesic circles {K ′} which lie inside F into a
unique continuous trajectory on F̄ .
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In this context the quasi-ergodicity of the trajectory K on F̄ will
mean that among all geodesic circles {K ′} there are those which
are approaching arbitrarily close to any given circle C . Now notice
that the geodesic circle K is determined by its base points ξ and η,
which lie on the real axis. Under the action of the modular group
the coordinates ξ and η will be mapped into the base points ξ′ and
η′ of the transformed circle K ′ :

ξ′ = mξ + n
pξ + q , η′ = mη + n

pη + q . (2.4)

In this context the geodesic circles can be considered ”close” to
each other if their base points lie in the infinitesimal neighborhood.
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It is convenient to introduce the plane E with the coordinates
(ξ, η) ∈ E . To each point (ξ, η) of the E plane corresponds a
geodesic circle on the z-plane, with ξ, η being its base coordinates.
And conversely to every circle of the z-plane one can assign two
points (ξ, η) or (η, ξ) on the E plane. The reason for this
ambiguity lies in the fact that the ordering of the base point
coordinates after the action of the modular transformation can be
inverted. The geodesic circles were considered to be in the
infinitesimal neighborhood if their base coordinates were close.
This implies now that the points (ξ′ = dξ, η′ = dη) on the E plane
resulting from the action of the full group of modular
transformation on (ξ, η) must be everywhere dense on the E plane
if the trajectory K is quasi-ergodic.
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In order to have quasi-ergodic behavior of a trajectory it is
necessary and sufficient to have an everywhere dense distribution
of points (ξ′, η′) in the subregion of the E plane defined by the
condition

− 1 < η < 0 , 1 < ξ . (2.5)
The necessity of this condition is obvious. Provided this condition
is fulfilled, one can apply to the points of this region the modular
transformations ξ′ = ξ + n , η′ = η + n with some integer n
and to see that the areas n < ξ, n − 1 < η < n are covered
everywhere dense. One can fix the arbitrariness of the base points
coordinates, mentioned above, by ordering them as η < ξ. It
follows then that it is sufficient to require an everywhere dense
distribution of points on the E plane for the geodesic circles which
are crossing the fundamental region F . Thus one can assume that
the base point coordinates of the initial circle K lie in the region
−1 < η < 0 and ξ > 1.
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Figure: The E plane. For a trajectory to be a quasi-ergodic it is necessary
and sufficient to have an everywhere dense distribution of the points (ξ′,
η′) (2.4) in the subregion of the E plane defined by the conditions
−1 < η < 0 , 1 < ξ. The region between the ”stairs” and the diagonal
ξ = η corresponds to the geodesic circles which are not crossing the
fundamental region F .
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The coordinates ξ and −η in the region −1 < η < 0 and ξ > 1 can
be represent as the continued fractions with positive integers ai

ξ = a0 +
1

a1 +
1

a2 +
1

a3 + .. .

, −η =
1

a−1 +
1

a−2 +
1

a−3 + .. .

,

which means that the geodesic trajectory K on F̄ can be
represented as an infinite A-chain of the form

......., a−3, a−2, a−1, a0, a1, a2, a3, ...... (2.6)
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Let us define for any integer n ≥ 0 the coordinates ηn and ξn by
the relations

ξn = an +
1

an+1 +
1

an+2 +
1

an+3 + .. .

, −ηn =
1

an−1 +
1

an−2 +
1

an−3 + .. .

.

This corresponds to the shift on the A-chain expansion to the
right. These coordinates satisfy the relations

ξ = Pnξn + Pn−1
Qnξn + Qn−1

, η = Pnηn + Pn−1
Qnηn + Qn−1

, (2.7)

where Pn and Qn are positive integers.

Hasmik Poghosyan YerPhI, Armenia
Artin Billiard Exponential Decay of Correlation Functions



Plan Artin Dynamical System with Quasi-Ergodic Trajectories Construction of Periodic Geodesic Trajectories

The coefficients satisfy the recursion relations given below

Pn+1 = Pnan + Pn−1 , (2.8)
Qn+1 = Qnan + Qn−1

Pn and Qn satisfy also the relation

PnQn−1 − QnPn−1 = (−1)n . (2.9)
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Let us consider the integer matrices constructed in terms of Pn
and Qn as

dn =
(

Pn Pn−1
Qn Qn−1

)
. (2.10)

Because of the (2.9) the determinant of dn is equal to (−1)n and
for even n they represent the matrices of the modular
transformations (2.3). It follows therefore from (2.7) and (2.10)
that the points (ξn, ηn) appear under the action of the modular
transformations d−1

n on the point (ξ, η)

ξn = d−1
n · ξ, ηn = d−1

n · η . (2.11)

The geodesic circle K was given by its base coordinated (ξ, η) and,
as it was just demonstrated, the points (ξn, ηn) are the base
coordinates of the geodesic circles {K ′}.
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Suppose that a sequence of 2m + 1 positive numbers

c−m, . . . , c−2, c−1, c0, c1, . . . , cm (2.12)

approximate a given circle C with a sufficient accuracy, then the
circles {K ′} will closely approach the circle C if it will be possible
to find an even index n such that the section of the A-chain (2.6)
of the length 2m + 1

an−m, an−m+1, . . . , an−1, an, an+1 . . . , an+m

will coincide either with c−m, . . . , c−2, c−1, c0, c1, . . . , cm or with its
reverse sequence. Therefore for the quasi-ergodicity of the
trajectory K , represented by the infinite A-chain (2.6), it is
necessary and sufficient to have all imaginable finite sequences
(2.12) of positive integers to be a section of the A-chain (2.6).
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Let us briefly outline what has been achieved. The geodesic
trajectory K is represented by an infinite A-chain (2.6). The points
on the E plane which correspond to the circles {K ′} are generated
by the algorithm (2.7) and (2.11). In order for the geodesic
trajectory K to be quasi-ergodic it is necessary and sufficient that
every imaginable finite sequence of positive integers can be found
as a section in the associated A-chain (2.6). It is known that
almost all numbers ξ have a quasi-ergodic continued fractions.
Thus almost all geodesic trajectories on the surface F̄ are
quasi-ergodic.
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Let us give an example where the trajectory is not quasi-ergodic
but quasi periodic. It is obvious that periodic A-chains correspond
to periodic orbits and vice versa. An example of a periodic A-chain
with a period 3 is given below:

......., 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , ......, (3.1)

where a0 = 1. We can find the base points of the trajectory
corresponding to the chin given above in the following form:

ξ = 1 +
1

2 +
1

3 +
1
ξ

, −η =
1

3 +
1

2 +
1

1− η

, (3.2)

where we used the fact that the chain has period three and that
the continued fractions repeat themselves after three steps.
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These are the quadratic equations on the base coordinates ξ, η of
K :

7ξ2 − 8ξ − 3 = 0 ,
7η2 − 8η − 3 = 0 .

In order to have the base points of the circle K in the region
(−1 < η < 0 , 1 < ξ ) we have to choose the solutions:

ξ = 1
7
(

4 +
√

37
)
, η = 1

7
(

4−
√

37
)
. (3.3)
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From ξ = dn · ξn and and η = dn · ηn it follows that

ξn = d−1
n · ξ , ηn = d−1

n · η ,

where
d−1

n =
(

Qn−1 −Pn−1
−Qn Pn

)
.

These are the matrices of the modular group which are defining
the geodesic circles {K ′}.
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With the help of the last two expressions it is easy to find their
base points describing the periodic geodesic:

ξ0 = ξ = 1
7

(
4 +
√

37
)
, ξ1 = 1

4

(√
37 + 3

)
,

ξ2 = 1
3

(√
37 + 5

)
, ξ3 = 1

7

(√
37 + 4

)
, ξ4 = 1

3

(√
37 + 3

)
and

η0 = η = 1
7

(
4−
√

37
)
, η1 = 1

4

(
3−
√

37
)
, (3.4)

η2 = 1
3

(
5−
√

37
)
, η3 = 1

7

(
4−
√

37
)
, η4 = 1

4

(
3−
√

37
)
.

These base coordinates define the full trajectory on the surface F̄
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The dynamical system is defined on the fundamental region of the
Lobachevsky plane which is obtained by the identification of points
congruent with respect to the modular group, a discrete subgroup
of the Lobachevsky plane isometries. The fundamental region in
this case is a hyperbolic triangle. The geodesic trajectories of the
non-Euclidean billiard are bounded to propagate on the
fundamental hyperbolic triangle.
Almost all geodesic trajectories are quasi-ergodic meaning that all
trajectories, with the exception of measure zero, during their time
evolution will approach infinitely close any point and any given
direction on surface F .
We also demonstrated how one can use the Artin algorithm to
construct a periodic geodesic trajectory.
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