
MIXMAX & other
RNGs for GeantV
J. Apostolakis (CERN) & S.Y. Jun (Fermilab)
3 July 2018

Conference and Workshop of the MIXMAX Consortium, NCSR Demokritos, 3-4 July 2018

https://indico.cern.ch/event/731433/

HEP experiment simulation

- Use Radiation Transport simulation (“Detector Simulation”) for
- design,
- calibration and
- analysis of experiments

- Simulation of LHC experiments are large user of computing resources
- ~ 50% of total experiment CPU time (which use 100,000 CPU cores .)

- Geant4 is the simulation engine in most recent HEP experiments
- Including ATLAS, CMS and LHCb at LHC

- The GeantV Vector prototype investigating potential of computing speed
gains using vectorisation & improved use of CPU cache

- GeantV requires vectorised versions of good PRNG engines

Transport Monte Carlo & PRNGs

PRNGs are a key part of Radiation Transport Monte Carlo

- For each secondary particle, its properties are sampled from distributions
using PRNG outputs (‘variates’)

- Typically O(10) variates used for every electromagnetic (EM) physics
interaction. More for hadronic interactions.

- PRNGs take 2-3% of CPU time, and the goal is to reduce it below 2.0% while
using a PRNG with the best statistical properties

- The use of PRNGs is relatively ‘robust’ - few of the values are critical
- Use of high quality PRNG (within CPU cost ceiling) is necessary to avoid

correlations between events, and to avoid very costly re-simulation

VecRNG and Simulation

▪ A vector PRNG object can be used with vector physics models
(or other classes)

▪ In the simple (non-reproducible) mode, a per-thread object
is used.

▪ In order to be reproducible, the PRNG state must be owned
by a track, and it must be used only for the simulation of that
track.

▪ Note: VecRNG is part of VecMath library - based on VecCore
vector library

Uniform()

Double_v lambda = ..

Double_v step= lamda * Uniform();

States of different instances

of ‘scalar’ generator

VecMath git repository at https://github.com/root-project/vecmath

Geant Vector Prototype & PRNGs

GeantV requires both scalar and vector PRNGs

- Some simulation is done in ‘scalar’ mode
- Most simulation is done in ‘vector’ mode, with one track in each lane of a

(hardware) vector
- E.g. X-coordinate (x0, x1, x2, x3) or energy (e0, e1, e2, e3) of tracks 0, 1, 2 & 3

Needs: (see full requirements in talk at GeantV community meeting, Oct 2016)

- Create an interface to extend sequential RNGs for vector use

VecRNG is our draft vector PRNG interface

- Static polymorphism: methods are not virtual
- Multiple outputs expected (one per lane) - from different ‘streams’

https://indico.cern.ch/event/570876/contributions/2352598/

Generators in VecRNG

Implemented already:

- MRG32k3a (137 ns scalar, 58 ns AVX per output value)
- Random123’s ThreeFry (74 ns scalar, 43 ns AVX per ouptut value)
- Random123’s Philox (55 ns scalar, 77 ns AVX per output value)

Underway / planned:

- MIXMAX N=17 (and potentially N=8)
- Ranlux

Benchmark for 106 values on Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz (Ivy Bridge).
The word size (W) and round (R) used for Random-123 were W4x32 R20 for Threefry
and W4x32 R10 for Philox

Needs of “per-track state”
▪ GeantV reproducible mode means per-track ‘owned’ PRNG object/state

▪ Requirement(s) / constraints

▪ Keep the same interface when moving to reproducible mode (as much as possible.)

▪ Ensure that after its use, the per-track PRNG’s state is correctly updated

▪ Constraints

▪ Speed - as low overhead as possible compared with ‘simpler’ VectorRNG use

▪ Each PRNG state will be at a different offset/location in its output (eg MIXMAX,
RANLUX) because its track had a different history, and number of variates used.

▪ Avoid copying of significant amount of data

3

1

0

2

RNG offset

in state

5

11

2

15

Track

slot

VecRNG Proxy Design/Interface

▪ New approach: create a ‘proxy’ object that appears like a vector-RNG object

▪ The proxy will provide all the methods of VecRNG object

▪ Constructor VecRNGproxy(prngState* trackPrng[VecLen], numVariatesExpected) takes

▪ a set of RNG states (corresponding to the tracks in the lanes)

▪ the expected number of outputs (variates)

▪ Destructor ensures that per-track RNG objects are correctly updated

▪ Its implementation will hide the complexity of the previous page code into the
proxy RNG class

Newest results / ongoing
First Proxy implementation ‘JoiningProxyMRG32k3a” copying state of MRG32k3a

Initial benchmarks:

- overhead of copying requires about 10 output values per stream to
compensate cost of copying state (in and out) of proxy

Investigating vectorisation of ‘partial sum’ operation

- Key operation for MIXMAX generator

Summary / next steps

Design of vector RNG interface

First t of vector RNGs using MRG32k3a and Random123

Per-track state of generator will be used for reproducible simulation.

First implementation to adapt VecRNG generators

Next steps:

- Full performance evaluation, used with vectorised EM physics models.
- Vector extension to MIXMAX
- Investigation of ‘pinning’ events to threads - can be fully repeatable with

simple RNG state (1 vector + 1 scalar) and thus reproducible without per-track
state.

References

1.

2.

3.

4.

5.

6.

7.

8.

Reproducibility & use of RNG

To ensure reproducibility the number of PRNG output values (variates)
consumed in a method must be constant.

- It must NOT depend on whether scalar or vector call is made,
- It must NOT depend on what happens to tracks in other vector lanes.

All algorithms that consume PRNG variates must ensure that the number of variates
consumed depends only on the values of the track itself and the PRNG output values.

So if there are variations in ‘consumption’, it seems that one of two strategies must
be used:

- To consume exactly as many as necessary for every track.
- To “normalize” the number of PRNG variates to be the equal to a fixed

maximum (potentially wasteful.)

