Quantum Gravity Simulations with MIXMAX Generator

Andrzej Görlich
Institute of Physics, Jagiellonian University, Poland

Athens, July 4th, 2018

Introduction
Discretization
Numerical setup
Minimal triangulation
Measurements
Observables
Phase structure
MIXMAX vs Ran3
New bifurcation phase
Topology
Parallelization
Parallel rejection
Parallel tempering

Introduction to Causal Dynamical Triangulations

What is Causal Dynamical Triangulations?

Causal Dynamical Triangulations (CDT) is a background independent approach to quantum gravity. It provides a lattice regularization of the formal gravitational path integral via a sum over causal triangulations.

$$
\int \mathrm{D}[g] e^{i S^{E H}[g]} \rightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

MIXMAX and CDT

For the last three years we have been using the standard version of the MIXMAX pseudorandom number generator with $N=256$, $s=-1, m=0$ (and discarding the first component) in our CDT code.
It shows many advantages:

- Great quality (passes Big Crush from TestU01)
- Very fast (although it's a small part, $<0.5 \%$ CPU time)
- Convenient vector size $(255=3 \times 85)$
- Convenient output size (61-bits, double)

It just works!

We encountered no issues which could be related to the RNG.

Regularization via triangulation

- A four-dimensional simplicial manifold is obtained by gluing pairs of four-simplices along their three-faces (tetrahedra).
- The metric is flat inside each 4-simplex.
- Curvature is localized at triangles.
- Global proper-time foliation. Spatial states are three-dimensional geometries. Discretized states are build from equilateral tetrahedra.
- Length of time links a_{t} and space links a_{s} is constant.

Fundamental building blocks

4D

Regge action

The Einstein-Hilbert action has a natural realization on piecewise linear geometries called Regge action

$$
S^{E}[g]=-\frac{1}{G} \int \mathrm{~d} t \int \mathrm{~d}^{D} \times \sqrt{g}(R-2 \Lambda)
$$

Regge action

The Einstein-Hilbert action has a natural realization on piecewise linear geometries called Regge action

$$
S^{R}[\mathcal{T}]=-K_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{14}-6 N_{0}\right)
$$

N_{0} number of vertices
N_{4} number of simplices
N_{14} number of simplices of type $\{1,4\}$
$K_{0} K_{4} \Delta$ bare coupling constants $\left(G, \Lambda, a_{t} / a_{s}\right)$

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\int \mathrm{D}[g] e^{i S^{E H}[g]}
$$

- To make sense of the gravitational path integral one uses the standard method of regularization - discretization.
- The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T} Wick rotation is well defined due to global proper-time foliation.
- Using Monte Carlo techniques we can approximate expectation values of observables.

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\sum_{\mathcal{T}} e^{i S^{R}[g[\mathcal{T}]]}
$$

- To make sense of the gravitational path integral one uses the standard method of regularization - discretization.
- The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T}.
- Wick rotation is well defined due to global proper-time foliation.
- Using Monte Carlo techniques we can approximate expectation values of observables.

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

- To make sense of the gravitational path integral one uses the standard method of regularization - discretization.
- The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T}.
- Wick rotation is well defined due to global proper-time foliation. $\left(a_{t} \rightarrow i a_{t}\right)$
- Using Monte Carlo techniques we can approximate expectation values of observables.

Causal Dynamical Triangulations

- The partition function of quantum gravity is defined as a formal integral over all geometries weighted by the Einstein-Hilbert action.

$$
Z=\sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

- To make sense of the gravitational path integral one uses the standard method of regularization - discretization.
- The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T}.
- Wick rotation is well defined due to global proper-time foliation. $\left(a_{t} \rightarrow i a_{t}\right)$
- Using Monte Carlo techniques we can approximate expectation values of observables.

Monte Carlo simulations - initial and minimal configuration To start the simulations we need to construct an initial triangulation with the desired topology.

- Minimal triangulation: five tetrahedra.

Toroidal topology $T^{3} \times S^{1}$

- Regular initial triangulation: 1024 four-simplices per slice
- Minimal triangulation: layered and interlaced structure, 15 vertices (not 3^{3}) and 90 tetrahedra.

Monte Carlo simulations - initial and minimal configuration

To start the simulations we need to construct an initial triangulation with the desired topology.
Spherical topology $\left(S^{3} \times S^{1}\right)$

- Minimal triangulation: five tetrahedra.
- Regular initial triangulation: 1024 four-simplices per slice
- Minimal triangulation: layered and interlaced structure, 15 vertices (not 3^{3}) and 90 tetrahedra.

Monte Carlo simulations - initial and minimal configuration

To start the simulations we need to construct an initial triangulation with the desired topology.
Spherical topology $\left(S^{3} \times S^{1}\right)$

- Minimal triangulation: five tetrahedra.

Toroidal topology $T^{3} \times S^{1}$

- Regular initial triangulation: $\mathbf{1 0 2 4}$ four-simplices per slice
(not 3^{3}) and 90 tetrahedra.

Monte Carlo simulations - initial and minimal configuration

To start the simulations we need to construct an initial triangulation with the desired topology.
Spherical topology $\left(S^{3} \times S^{1}\right)$

- Minimal triangulation: five tetrahedra.

Toroidal topology $T^{3} \times S^{1}$

- Regular initial triangulation: 1024 four-simplices per slice
- Minimal triangulation: layered and interlaced structure, 15 vertices (not 3^{3}) and 90 tetrahedra.

Layer $L_{0}, y=0$

Layer $L_{1}, y=1$

Layer $L_{2}, y=2$

Monte Carlo simulations - initial and minimal configuration

To start the simulations we need to construct an initial triangulation with the desired topology.
Spherical topology $\left(S^{3} \times S^{1}\right)$

- Minimal triangulation: five tetrahedra.

Toroidal topology $T^{3} \times S^{1}$

- Regular initial triangulation: $\mathbf{1 0 2 4}$ four-simplices per slice
- Minimal triangulation $\frac{1}{\text { Stronger finite size effects! re, } 15 \text { vertices }}$ (not 3^{3}) and 90 tetra Stronger finite size effects!

Layer $L_{0}, y=0$

Layer $L_{1}, y=1$

Layer $L_{2}, y=2$

Monte Carlo simulations - Pachner moves

Random walk over configuration space:

- Ergodicity all possible configurations can be generated by moves
- Fixed topology moves don't change the topology
- Causality moves preserve the foliation
- 4D CDT set of 7 moves

Example of a 2D Monte Carlo move

Monte Carlo Markov Chain

- We perform a random walk in the phase-space of configurations (space of piecewise linear geometries).
- Each step is one of the 4D CDT moves.
- The weight (acceptance probability) $W(\mathcal{A} \rightarrow \mathcal{B})$ of a move from configuration \mathcal{A} to \mathcal{B} is determined (not uniquely) by the detailed balance condition:

$$
P(\mathcal{A}) W(\mathcal{A} \rightarrow \mathcal{B})=P(\mathcal{B}) W(\mathcal{B} \rightarrow \mathcal{A})
$$

- The Monte Carlo algorithm ensures that we probe the configurations with the probability $P(\mathcal{A})$.
- After sufficiently long time, the configurations are independent.
- All we need, is the probability functional for configurations $P(\mathcal{A})$ up to the normalization (Regge action).

Dynamical lattice

- The Monte Carlo moves alter the underlying spacetime lattice making it dynamical. The (sub)-simplices appear and disappear modifying the connectivity.
- To effectively deal with such system various techniques are used.

Basic stages of a single move attempt:

- Choose which move type (with adjusted probabilities).
- Choose where to make the move (index).
- Verify move validity (hash table) and calculate its weight (maximal information).
- Check whether to make the move (detailed balance). Reject the move, or accept the move.
- Update the triangulation if move was accepted.

Internals of CDT code: indices and labels

- Each object (point, link, triangle or simplex) is assigned two integer numbers: a label and an index.
- The label is fixed during the object lifetime allowing for its unique identification. Labels are not ordered continuously (removal).
- Indices are ordered continuously. They are split into few types to quickly find a valid move location. Index of a (sub)-simplex may change for various reasons (hidden randomness).

Indices

Labels

Internals of CDT code: indices and labels

- Each object (point, link, triangle or simplex) is assigned two integer numbers: a label and an index.
- The label is fixed durino the obiect lifetime allowino for its unique idf New version ($>30 \%$ faster) (removal) rewritten code
- Indices ar simple, separate containers for to quickly may chan
- tabelarization
- avoid int \leftrightarrow f.p. conversions
- better hashing
 sub-simplices
types implex
- common field for coordination number and time-likeness

Labels

Internals of CDT code: data structures

- Simulations are limited by CPU time consumption, while memory usage is not a bottle-neck.
- To enhance the acceptance rate of the moves and gain fast access to necessary data maximal information philosophy is adopted.
- Various information about points, links, triangles and simplices (but not tetrahedra) are stored:

```
struct triangle
{
int p[3]; /* Vertex labels */
int n; /* Coordination number */
int s; /* Simplex which owns this triangle */
int i; /* Index */
int h; /* Hash code of triangle */
int next; /* Next triangle in hash table list */
}
```


Internals of CDT code: hash tables

- To perform a fast check if a link or triangle with given vertices exists, a hash table is used.
- Verification of tetrahedron existence is more complicated and demands making a loop around a triangle.
Given labels of vertices $\mathrm{p}[0]<\mathrm{p}[1]<\mathrm{p}[2]$ we calculate the hash code,

$$
h=(p[0] \ll 8) \text { xor }(p[1] \ll 4) \text { xor } p[2]
$$

Triangles with the same hash code are stored in a singly-linked list.

Numerical setup

- Monte Carlo algorithm probes the space of configurations with the probability $P[\mathcal{T}]=\frac{1}{Z} e^{-S[\mathcal{T}]}$.
- To calculate the expectation value of an observable, the path integral is approximated by a sum over a finite set of Monte Carlo configurations.

$$
\begin{aligned}
\langle\mathcal{O}[g]\rangle & =\frac{1}{Z} \int \mathcal{D}[g] \mathcal{O}[g] e^{-S[g]} \\
& \downarrow \\
\langle\mathcal{O}[\mathcal{T}]\rangle & =\frac{1}{Z} \sum_{\mathcal{T}} \mathcal{O}[\mathcal{T}] e^{-S[\mathcal{T}]} \\
& \downarrow \\
\langle\mathcal{O}[\mathcal{T}]\rangle & \approx \frac{1}{K} \sum_{i=1}^{K} \mathcal{O}\left[\mathcal{T}^{(i)}\right]
\end{aligned}
$$

Numerical setup

- Monte Carlo algorithm probes the space of configurations with the probability $P[\mathcal{T}]=\frac{1}{Z} e^{-S[\mathcal{T}]}$.
- To calculate the expectation value of an observable, the path integral is approximated by a sum over a finite set of

What can we measure?

From the computational point of view, the basic observables are the parameters which appear in the bare action:
N_{0} number of vertices
N_{41} number of simplices of type $\{4,1\}$
N_{32} number of simplices of type $\{3,2\}$
The number of all remaining sub-simplices can be expressed as a linear combination of above parameters.
The simplest observable providing information about spacetime geometry is spatial volume n_{t} defined as a number of tetrahedra building a three-dimensional slice $t=1 \ldots T$.
(Proper definition of e.g. curvature is non-trivial.)

Phase structure

Phase structure

$$
S[\mathcal{T}]=-K_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{14}-6 N_{0}\right)
$$

Phase structure

$$
S[\mathcal{T}]=-K_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{14}-6 N_{0}\right)
$$

Phase structure

$$
S[\mathcal{T}]=-K_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{14}-6 N_{0}\right)
$$

Phase structure

$$
S[\mathcal{T}]=-K_{0} N_{0}+K_{4} N_{4}+\Delta\left(N_{14}-6 N_{0}\right)
$$

Second order phase transition line K_{0}

De Sitter phase - background geometry

- In phase C the time translation symmetry is spontaneously broken and the three-volume profile n_{t} is bell-shaped.
- The average volume $\left\langle n_{t}\right\rangle$ is with high accuracy given by formula

$$
\left\langle n_{t}\right\rangle=H \cos ^{3}\left(\frac{t}{W}\right)
$$

a classical vacuum solution.

De Sitter phase - properties

- Phase C, the so called de Sitter phase, is physically most interesting.
- A four-dimensional background geometry emerges dynamically. The background geometry corresponds to Euclidean de Sitter space (S^{4}), a classical vacuum solution.
- It is also possible to study quantum fluctuations around it.

Autocorrelation: MIXMAX vs Ran3

The MC moves introduce only small local changes and the configurations may be correlated for a long time.

$$
\text { د } 0.20 \text { (} 0 \text { (}
$$

Autocorrelation time: MIXMAX vs Ran3

Often in the vicinity of phase transition, a phenomenon of critical slowing down is observed.
It takes longer for the system to thermalize, amplitude of fluctuations increases and the autocorrelation time grows.

The new bifurcation phase

- The spatial volume profile $\left\langle n_{t}\right\rangle$ is similar as in phase C. But the agreement with $\cos ^{3}(t)$ is broken.
- The transfer matrix bifurcates into two branches. At some volume the kinetic term splits into a sum of two shifted Gausses.
- Every second slice singular vertices of very high order appear. New order parameter: $\max _{v} o(v)$.
- Not captured by global properties of the triangulation $\left(N_{0}, N_{32}\right)$.

The new bifurcation phase

- The spatial volume profile $\left\langle n_{t}\right\rangle$ is similar as in phase C. But the agreement with $\cos ^{3}(t)$ is broken.
- The transfer matrix bifurcates int Difficult to dissolve ome volume the kinetic term splits into a sum of two shifted Gausses.
- Every second slice singular vertices of very high order appear. New order parameter: $\max _{v} o(v)$.
- Not captured by global properties of the triangulation $\left(N_{0}, N_{32}\right)$.

Toroidal topology - phase transitions

For the toroidal topology, the $C_{b i f} / C_{d S}$ transitions reveals a hysteresis and very long thermalization time. Reason?

- Strong finite size effects
- Phase transition order depends on topology?

How to improve the simulations?

Motivation

- Limited single-core performance (gates, frequency, voltage, power)
- Cheap access to many cores

Naive parallelization is used to multiply the statistic, but ...

- ... a thermalized configuration is needed.
- Thermalization stage is a bottleneck
- Critical slowing down near phase transition
- Need to speed-up a single Monte Carlo Markov chain \Rightarrow parallelization
- Large minimal triangulation \Rightarrow strong finite size effects \Rightarrow large triangulations
- Simple parallelization does not work ...

Simple parallelization

A simple parallel algorithm, where many threads modify the same triangulation, has a very large overhead

- Detect collisions
- Thread synchronization: withdraw a move
- Move weight depends on global parameters - threads are coupled

Parallel rejection

(by Jack Laiho, Phys. Rev. D 96 (2017) 064015)

- In some regions, the acceptance rate of MC moves is very low (critical slowing down)
- In such case a parallel rejection algorithm can be applied
- Multiple threads execute a series of attempted moves
- When one of them succeeds, rest of the threads are stopped and the triangulation is updated
- No collision detection is necessary
- To guarantee compatibility with the scalar version, youngest move has to be chosen (wait)
- Each attempted move is identified by three random numbers:
- which move
- where to make the move
- whether to make the move (detailed balance)
- A block of random numbers is precomputed and split between threads. Synchronization with the RNG (separate thread).

Parallel rejection - diagram

	Thread				
	1	2	3	4	
	1	2	3		Enumerate
	5	6	7	8	set of a few
	9		11	12	random number
	13	10	15	16	
.	17	14	-	-	
\square					Attempted
$\stackrel{\square}{0}$					MC move
\bigcirc					
	41				
		38			
					Accepted move
			59		

Parallel rejection - issues

- For three threads we gained 100% speed up for very small acceptance rate $\frac{1}{400}$
- Different move types significantly vary in acceptance rate
- Fixed number of random numbers (3) consumed per attempted move
- Replicability, compatibility with scalar version
- Thread synchronization is expensive
- Low level libraries, single barrier from pthreads
- Atomic operations (counter), busy waiting

Replica exchange

- In this method we run a number of processes (replicas) with slightly different values of coupling constants.
- Periodically, the configurations are exchanged between processes with a certain probability (detailed balance).
A CDT configuration is a heavy object (triangulation + additional data). Instead, the sets of a few coupling constants (denoted as β) are exchanged.

Replica exchange

- In this method we run a number of processes (replicas) with slightly different values of coupling constants.
- Periodically, the configurations are exchanged between processes with a certain probability (detailed balance).
- A CDT configuration is a heavy object (triangulation + additional data). Instead, the sets of a few coupling constants (denoted as β) are exchanged.

Replica exchange

- Exchange probability fulfills the detailed balance condition,

$$
\begin{aligned}
P(A) & =P_{1}\left(\mathcal{T}_{1}\right) P_{2}\left(\mathcal{T}_{2}\right), \quad P(B)=P_{2}\left(\mathcal{T}_{1}\right) P_{1}\left(\mathcal{T}_{2}\right), \\
W(A \rightarrow B) & =\min \left\{1, \frac{P_{2}\left(\mathcal{T}_{1}\right) P_{1}\left(\mathcal{T}_{2}\right)}{P_{1}\left(\mathcal{T}_{1}\right) P_{2}\left(\mathcal{T}_{2}\right)}\right\}
\end{aligned}
$$

- Implementation: Managing process and Linux message queues to notify working processes when and with whom exchange

Replica exchange

- Exchange probability fulfills the detailed balance condition,

$$
\begin{aligned}
P(A) & =P_{1}\left(\mathcal{T}_{1}\right) P_{2}\left(\mathcal{T}_{2}\right), \quad P(B)=P_{2}\left(\mathcal{T}_{1}\right) P_{1}\left(\mathcal{T}_{2}\right), \\
W(A \rightarrow B) & =\min \left\{1, \frac{P_{2}\left(\mathcal{T}_{1}\right) P_{1}\left(\mathcal{T}_{2}\right)}{P_{1}\left(\mathcal{T}_{1}\right) P_{2}\left(\mathcal{T}_{2}\right)}\right\}
\end{aligned}
$$

- Implementation: Managing process and Linux message queues to notify working processes when and with whom exchange

Autocorrelation time

- History of one configuration (Markov chain) contributes to many simulations and reduces the autocorrelation time.
- Exchange rate has to be higher than the autocorrelation time
- For 31 replicas a significant decrease of autocorrelation time is observed. A point near A/C transition (toroidal topology):

Auto-correlation of N_{32}

Replica exchange - hysteresis

Monte Carlo history of the relevant order parameter $\operatorname{Max} o(p)$ for single value of coupling constants. Visible jump and exchanges.
$\Delta=0.370$

Replica exchange - hysteresis

Average value of the order parameter as a function of coupling constant. Comparison: replica exchange vs single threaded.

Thank You!

