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Introduction to Causal Dynamical Triangulations

What is Causal Dynamical Triangulations?

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity. It provides a lattice
regularization of the formal gravitational path integral via a sum
over causal triangulations.∫

D[g ]e iS
EH [g ]

∑
T
e−S

R [T ]

continuous discrete



MIXMAX and CDT

For the last three years we have been using the standard version of
the MIXMAX pseudorandom number generator with N = 256,
s = −1,m = 0 (and discarding the first component) in our CDT
code.
It shows many advantages:

I Great quality (passes Big Crush from TestU01)
I Very fast (although it’s a small part, < 0.5% CPU time)
I Convenient vector size (255 = 3× 85)
I Convenient output size (61-bits, double)

It just works!

We encountered no issues which could be related to the RNG.



Regularization via triangulation
I A four-dimensional simplicial manifold is obtained by gluing

pairs of four-simplices along their three-faces (tetrahedra).
I The metric is flat inside each 4-simplex.
I Curvature is localized at triangles.
I Global proper-time foliation. Spatial states are

three-dimensional geometries. Discretized states are build from
equilateral tetrahedra.

I Length of time links at and space links as is constant.

Fundamental building blocks

2D 3D 4D



Regge action
The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called Regge action

SE [g ] = − 1
G

∫
dt
∫

dDx
√
g(R − 2Λ)

N0 number of vertices
N4 number of simplices
N14 number of simplices of type {1, 4}

K0 K4 ∆ bare coupling constants (G ,Λ, at/as )

The partition function∫
D[g ]e iS

EH [g ] →
∑
T

e−S
R [T ]



Regge action
The Einstein-Hilbert action has a natural realization on piecewise
linear geometries called Regge action

SR [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)

N0 number of vertices
N4 number of simplices
N14 number of simplices of type {1, 4}

K0 K4 ∆ bare coupling constants (G ,Λ, at/as )



Causal Dynamical Triangulations

I The partition function of quantum gravity is defined as a formal
integral over all geometries weighted by the Einstein-Hilbert action.

Z =

∫
D[g ]e iS

EH [g ]

I To make sense of the gravitational path integral one uses
the standard method of regularization - discretization.

I The path integral is written as a nonperturbative sum over all
causal triangulations T .

I Wick rotation is well defined due to global proper-time foliation.
(at → iat)

I Using Monte Carlo techniques we can approximate expectation
values of observables.
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values of observables.



Monte Carlo simulations - initial and minimal configuration
To start the simulations we need to construct an initial
triangulation with the desired topology.
Spherical topology (S3 × S1)

I Minimal triangulation: five tetrahedra.
Toroidal topology T 3 × S1

I Regular initial triangulation: 1024 four-simplices per slice
I Minimal triangulation: layered and interlaced structure, 15 vertices

(not 33) and 90 tetrahedra.
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Monte Carlo simulations - initial and minimal configuration
To start the simulations we need to construct an initial
triangulation with the desired topology.
Spherical topology (S3 × S1)

I Minimal triangulation: five tetrahedra.
Toroidal topology T 3 × S1

I Regular initial triangulation: 1024 four-simplices per slice
I Minimal triangulation: layered and interlaced structure, 15 vertices
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Monte Carlo simulations - initial and minimal configuration
To start the simulations we need to construct an initial
triangulation with the desired topology.
Spherical topology (S3 × S1)

I Minimal triangulation: five tetrahedra.
Toroidal topology T 3 × S1

I Regular initial triangulation: 1024 four-simplices per slice
I Minimal triangulation: layered and interlaced structure, 15 vertices

(not 33) and 90 tetrahedra.
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Monte Carlo simulations - Pachner moves
Random walk over configuration space:

I Ergodicity all possible configurations can be generated by
moves

I Fixed topology moves don’t change the topology
I Causality moves preserve the foliation
I 4D CDT set of 7 moves

Example of a 2D Monte Carlo move



Monte Carlo Markov Chain

I We perform a random walk in the phase-space of
configurations (space of piecewise linear geometries).

I Each step is one of the 4D CDT moves.
I The weight (acceptance probability) W (A → B) of a move

from configuration A to B is determined (not uniquely) by the
detailed balance condition:

P(A)W (A → B) = P(B)W (B → A)

I The Monte Carlo algorithm ensures that we probe the
configurations with the probability P(A).

I After sufficiently long time, the configurations are independent.
I All we need, is the probability functional for configurations

P(A) up to the normalization (Regge action).



Dynamical lattice

I The Monte Carlo moves alter the underlying spacetime lattice
making it dynamical. The (sub)-simplices appear and
disappear modifying the connectivity.

I To effectively deal with such system various techniques are
used.

Basic stages of a single move attempt:
I Choose which move type (with adjusted probabilities).
I Choose where to make the move (index).
I Verify move validity (hash table) and calculate its weight

(maximal information).
I Check whether to make the move (detailed balance). Reject

the move, or accept the move.
I Update the triangulation if move was accepted.



Internals of CDT code: indices and labels
I Each object (point, link, triangle or simplex) is assigned two

integer numbers: a label and an index.
I The label is fixed during the object lifetime allowing for its

unique identification. Labels are not ordered continuously
(removal).

I Indices are ordered continuously. They are split into few types
to quickly find a valid move location. Index of a (sub)-simplex
may change for various reasons (hidden randomness).

Space-like links
with order 6

Space-like links
with order 6

Time-like links
with order 4

Time-like links
with order 4 Other linksOther links Unused indicesUnused indices

Indices
R

em
ov

e

Labels



Internals of CDT code: indices and labels
I Each object (point, link, triangle or simplex) is assigned two

integer numbers: a label and an index.
I The label is fixed during the object lifetime allowing for its

unique identification. Labels are not ordered continuously
(removal).

I Indices are ordered continuously. They are split into few types
to quickly find a valid move location. Index of a (sub)-simplex
may change for various reasons (hidden randomness).

Space-like links
with order 6

Space-like links
with order 6

Time-like links
with order 4

Time-like links
with order 4 Other linksOther links Unused indicesUnused indices

Indices
R

em
ov

e

Labels

New version (> 30% faster)
I rewritten code
I simple, separate containers for

sub-simplices
I tabelarization
I avoid int ↔ f.p. conversions
I better hashing
I common field for coordination number

and time-likeness
I ...



Internals of CDT code: data structures
I Simulations are limited by CPU time consumption, while

memory usage is not a bottle-neck.
I To enhance the acceptance rate of the moves and gain fast

access to necessary data maximal information philosophy is
adopted.

I Various information about points, links, triangles and simplices
(but not tetrahedra) are stored:

struct triangle
{

int p[3]; /* Vertex labels */
int n; /* Coordination number */
int s; /* Simplex which owns this triangle */
int i; /* Index */
int h; /* Hash code of triangle */
int next; /* Next triangle in hash table list */

}



Internals of CDT code: hash tables
I To perform a fast check if a link or triangle with given vertices

exists, a hash table is used.
I Verification of tetrahedron existence is more complicated and

demands making a loop around a triangle.
Given labels of vertices p[0] < p[1] < p[2] we calculate the
hash code,

h = (p[0] << 8) xor (p[1] << 4) xor p[2]

Triangles with the same hash code are stored in a singly-linked list.

p1 p2 p3

vertices

hash triangle triangle triangle



Numerical setup

I Monte Carlo algorithm probes the space of configurations
with the probability P[T ] = 1

Z e
−S[T ].

I To calculate the expectation value of an observable, the
path integral is approximated by a sum over a finite set of
Monte Carlo configurations.

〈O[g ]〉 =
1
Z

∫
D[g ]O[g ]e−S[g ]

↓
〈O[T ]〉 =

1
Z

∑
T
O[T ]e−S[T ]

↓

〈O[T ]〉 ≈ 1
K

K∑
i=1

O[T (i)]



Numerical setup

I Monte Carlo algorithm probes the space of configurations
with the probability P[T ] = 1

Z e
−S[T ].

I To calculate the expectation value of an observable, the
path integral is approximated by a sum over a finite set of
Monte Carlo configurations.

〈O[g ]〉 =
1
Z

∫
D[g ]O[g ]e−S[g ]

↓
〈O[T ]〉 =

1
Z

∑
T
O[T ]e−S[T ]

↓

〈O[T ]〉 ≈ 1
K

K∑
i=1

O[T (i)]

Example of an observable is nt ,
the number of tetrahedra build-
ing slice t, t = 1, . . . ,T .

Configurations are generated with
proper probability P[T ] = 1

Z e
−S[T ].

Normalization Z is not needed.



What can we measure?

From the computational point of view, the basic observables are
the parameters which appear in the bare action:

N0 number of vertices
N41 number of simplices of type {4, 1}
N32 number of simplices of type {3, 2}

The number of all remaining sub-simplices can be expressed as a
linear combination of above parameters.

The simplest observable providing information about spacetime
geometry is spatial volume nt defined as a number of tetrahedra
building a three-dimensional slice t = 1 . . .T .

(Proper definition of e.g. curvature is non-trivial.)



Phase structure

S [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)
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Phase structure

S [T ] = −K0N0 + K4N4 + ∆(N14 − 6N0)
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De Sitter phase - background geometry
I In phase C the time translation symmetry is spontaneously

broken and the three-volume profile nt is bell-shaped.
I The average volume 〈nt〉 is with high accuracy given by

formula
〈nt〉 = H cos3

( t

W

)
a classical vacuum solution.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

−40 −30 −20 −10 0 10 20 30 40

ce
nt

er
of

vo
lu

m
e

n
t

t

〈nt〉
nt

Average profile

Snapshot configuration



De Sitter phase - properties
I Phase C, the so called de Sitter phase, is physically most

interesting.
I A four-dimensional background geometry emerges

dynamically. The background geometry corresponds to
Euclidean de Sitter space (S4), a classical vacuum solution.

I It is also possible to study quantum fluctuations around it.
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Autocorrelation: MIXMAX vs Ran3
The MC moves introduce only small local changes and the
configurations may be correlated for a long time.

∆ = 0.20 ∆ = 0.22 (critical) ∆ = 0.30



Autocorrelation time: MIXMAX vs Ran3
Often in the vicinity of phase transition, a phenomenon of critical
slowing down is observed.
It takes longer for the system to thermalize, amplitude of
fluctuations increases and the autocorrelation time grows.
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The new bifurcation phase

space

time
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I The spatial volume profile 〈nt〉 is similar as in phase C. But the
agreement with cos3(t) is broken.

I The transfer matrix bifurcates into two branches. At some volume
the kinetic term splits into a sum of two shifted Gausses.

I Every second slice singular vertices of very high order appear.
New order parameter: maxv o(v).

I Not captured by global properties of the triangulation (N0,N32).
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Toroidal topology - phase transitions

For the toroidal topology, the Cbif /CdS transitions reveals a
hysteresis and very long thermalization time.
Reason?
I Strong finite size effects
I Phase transition order depends on topology?
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Motivation

I Limited single-core performance (gates, frequency, voltage,
power)

I Cheap access to many cores

Naive parallelization is used to multiply the statistic, but ...
I ... a thermalized configuration is needed.
I Thermalization stage is a bottleneck
I Critical slowing down near phase transition
I Need to speed-up a single Monte Carlo Markov chain ⇒

parallelization
I Large minimal triangulation ⇒ strong finite size effects ⇒

large triangulations
I Simple parallelization does not work ...



Simple parallelization
A simple parallel algorithm, where many threads modify the same
triangulation, has a very large overhead
I Detect collisions
I Thread synchronization: withdraw a move
I Move weight depends on global parameters - threads are

coupled



Parallel rejection
(by Jack Laiho, Phys. Rev. D 96 (2017) 064015)

I In some regions, the acceptance rate of MC moves is very low
(critical slowing down)

I In such case a parallel rejection algorithm can be applied
I Multiple threads execute a series of attempted moves
I When one of them succeeds, rest of the threads are stopped

and the triangulation is updated
I No collision detection is necessary
I To guarantee compatibility with the scalar version, youngest

move has to be chosen (wait)
I Each attempted move is identified by three random numbers:

I which move
I where to make the move
I whether to make the move (detailed balance)

I A block of random numbers is precomputed and split between
threads. Synchronization with the RNG (separate thread).



Parallel rejection - diagram
Thread
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Parallel rejection - issues

I For three threads we gained 100% speed up for very small
acceptance rate 1

400
I Different move types significantly vary in acceptance rate
I Fixed number of random numbers (3) consumed per

attempted move
I Replicability, compatibility with scalar version
I Thread synchronization is expensive
I Low level libraries, single barrier from pthreads
I Atomic operations (counter), busy waiting



Replica exchange
I In this method we run a number of processes (replicas) with slightly

different values of coupling constants.
I Periodically, the configurations are exchanged between processes

with a certain probability (detailed balance).
I A CDT configuration is a heavy object (triangulation + additional

data). Instead, the sets of a few coupling constants (denoted as β)
are exchanged.

T1
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T2
β2

T3
β3

TP−1
βP−1

TP
βP

T1
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TP
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Replica exchange
I Exchange probability fulfills the detailed balance condition,

P(A) = P1(T1)P2(T2), P(B) = P2(T1)P1(T2),

W (A→ B) = min{1, P2(T1)P1(T2)

P1(T1)P2(T2)
}

I Implementation: Managing process and Linux message queues to
notify working processes when and with whom exchange
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Autocorrelation time
I History of one configuration (Markov chain) contributes to

many simulations and reduces the autocorrelation time.
I Exchange rate has to be higher than the autocorrelation time
I For 31 replicas a significant decrease of autocorrelation time is

observed. A point near A/C transition (toroidal topology):
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Replica exchange - hysteresis

Monte Carlo history of the relevant order parameter Max o(p) for
single value of coupling constants. Visible jump and exchanges.
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Replica exchange - hysteresis

Average value of the order parameter as a function of coupling
constant. Comparison: replica exchange vs single threaded.
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Thank You!
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