Quantum Gravity Simulations with MIXMAX Generator

Andrzej Görlich

Institute of Physics, Jagiellonian University, Poland

Athens, July 4th, 2018

Introduction

Discretization
Numerical setup
Minimal triangulation

Measurements

Observables
Phase structure

MIXMAX vs Ran3

New bifurcation phase

Topology

Parallelization

Parallel rejection
Parallel tempering

Introduction to Causal Dynamical Triangulations

What is Causal Dynamical Triangulations?

Causal Dynamical Triangulations (CDT) is a background independent approach to quantum gravity. It provides a lattice regularization of the formal gravitational path integral via a sum over causal triangulations.

$$\int D[g]e^{iS^{EH}[g]} \longrightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}$$
continuous
discrete

MIXMAX and CDT

For the last three years we have been using the standard version of the MIXMAX pseudorandom number generator with N=256, s=-1, m=0 (and discarding the first component) in our CDT code.

It shows many advantages:

- ► Great quality (passes Big Crush from *TestU01*)
- lacktriangle Very fast (although it's a small part, < 0.5% CPU time)
- ▶ Convenient vector size $(255 = 3 \times 85)$
- Convenient output size (61-bits, double)

It just works!

We encountered no issues which could be related to the RNG.

Regularization via triangulation

- ▶ A four-dimensional simplicial manifold is obtained by gluing pairs of four-simplices along their three-faces (tetrahedra).
- ► The metric is **flat** inside each 4-simplex.
- Curvature is localized at triangles.
- ▶ Global proper-time foliation. Spatial states are three-dimensional geometries. Discretized states are build from equilateral tetrahedra.
- ▶ Length of time links a_t and space links a_s is constant.

Fundamental building blocks

Regge action

The Einstein-Hilbert action has a natural realization on piecewise linear geometries called Regge action

$$S^{E}[g] = -\frac{1}{G} \int \mathrm{d}t \int \mathrm{d}^{D}x \sqrt{g}(R - 2\Lambda)$$

$$N_0$$
 r

 N_4 r

 N_{14} r

 N_{14} r

 N_{14} r

 N_{14} r

 N_{14} r

 N_{15} r

 N_{16} r

Regge action

The Einstein-Hilbert action has a natural realization on piecewise linear geometries called Regge action

$$S^{R}[\mathcal{T}] = -K_0N_0 + K_4N_4 + \Delta(N_{14} - 6N_0)$$

 N_0 number of vertices

N₄ number of simplices

 N_{14} number of simplices of type $\{1,4\}$

 K_0 K_4 Δ bare coupling constants $(G, \Lambda, a_t/a_s)$

$$Z = \int \mathrm{D}[g] e^{iS^{EH}[g]}$$

- ► To make sense of the gravitational path integral one uses the standard method of regularization discretization.
- ▶ The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T} .
- Wick rotation is well defined due to global proper-time foliation. $(a_t \rightarrow i a_t)$
- Using Monte Carlo techniques we can approximate expectation values of observables.

$$Z = \sum_{\mathcal{T}} e^{iS^R[g[\mathcal{T}]]}$$

- ► To make sense of the gravitational path integral one uses the standard method of regularization discretization.
- ► The path integral is written as a nonperturbative sum over all causal triangulations T.
- Wick rotation is well defined due to global proper-time foliation. $(a_t \rightarrow i a_t)$
- Using Monte Carlo techniques we can approximate expectation values of observables.

$$Z = \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}$$

- ► To make sense of the gravitational path integral one uses the standard method of regularization discretization.
- ▶ The path integral is written as a nonperturbative sum over all causal triangulations \mathcal{T} .
- Wick rotation is well defined due to global proper-time foliation. $(a_t \rightarrow i a_t)$
- Using Monte Carlo techniques we can approximate expectation values of observables.

$$Z = \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}$$

- ► To make sense of the gravitational path integral one uses the standard method of regularization discretization.
- ► The path integral is written as a nonperturbative sum over all causal triangulations T.
- Wick rotation is well defined due to global proper-time foliation. $(a_t \rightarrow i a_t)$
- Using Monte Carlo techniques we can approximate expectation values of observables.

To start the simulations we need to construct an initial triangulation with the desired topology.

Spherical topology $(S^3 \times S^1)$

- ▶ Minimal triangulation: five tetrahedra. Toroidal topology $T^3 \times S^1$
- ▶ Regular initial triangulation: 1024 four-simplices per slice
- ► Minimal triangulation: layered and interlaced structure, 15 vertices (not 3³) and 90 tetrahedra.

To start the simulations we need to construct an initial triangulation with the desired topology. Spherical topology $(S^3 \times S^1)$

► Minimal triangulation: five tetrahedra.

- ▶ Regular initial triangulation: 1024 four-simplices per slice
- ► Minimal triangulation: layered and interlaced structure, 15 vertices (not 3³) and 90 tetrahedra.

To start the simulations we need to construct an initial triangulation with the desired topology. Spherical topology $(S^3 \times S^1)$

▶ Minimal triangulation: five tetrahedra. Toroidal topology $T^3 \times S^1$

- ▶ Regular initial triangulation: 1024 four-simplices per slice
- Minimal triangulation: layered and interlaced structure, 15 vertices (not 3³) and 90 tetrahedra.

To start the simulations we need to construct an initial triangulation with the desired topology. Spherical topology $(S^3 \times S^1)$

Minimal triangulation: five tetrahedra.
 Toroidal topology T³ × S¹

▶ Regular initial triangulation: 1024 four-simplices per slice

► Minimal triangulation: layered and interlaced structure, 15 vertices (not 3³) and 90 tetrahedra.

To start the simulations we need to construct an initial triangulation with the desired topology. Spherical topology $(S^3 \times S^1)$

► Minimal triangulation: five tetrahedra. Toroidal topology $T^3 \times S^1$

- ▶ Regular initial triangulation: 1024 four-simplices per slice
- Minimal triangulation Stronger finite size effects! re, 15 vertices (not 3³) and 90 tetra

Monte Carlo simulations - Pachner moves

Random walk over configuration space:

Ergodicity all possible configurations can be generated by moves

► Fixed topology moves don't change the topology

Causality moves preserve the foliation

▶ 4D CDT set of 7 moves

Example of a 2D Monte Carlo move

Monte Carlo Markov Chain

- We perform a random walk in the phase-space of configurations (space of piecewise linear geometries).
- ► Each step is one of the 4D CDT moves.
- ▶ The weight (acceptance probability) $W(A \rightarrow B)$ of a move from configuration A to B is determined (not uniquely) by the detailed balance condition:

$$P(A)W(A \rightarrow B) = P(B)W(B \rightarrow A)$$

- ▶ The Monte Carlo algorithm ensures that we probe the configurations with the probability P(A).
- ► After sufficiently long time, the configurations are independent.
- All we need, is the probability functional for configurations P(A) up to the normalization (Regge action).

Dynamical lattice

- The Monte Carlo moves alter the underlying spacetime lattice making it dynamical. The (sub)-simplices appear and disappear modifying the connectivity.
- To effectively deal with such system various techniques are used.

Basic stages of a single move attempt:

- Choose which move type (with adjusted probabilities).
- Choose where to make the move (index).
- Verify move validity (hash table) and calculate its weight (maximal information).
- ► Check whether to make the move (detailed balance). Reject the move, or accept the move.
- Update the triangulation if move was accepted.

Internals of CDT code: indices and labels

- ► Each object (point, link, triangle or simplex) is assigned two integer numbers: a label and an index.
- ► The label is fixed during the object lifetime allowing for its unique identification. Labels are not ordered continuously (removal).
- ▶ Indices are ordered continuously. They are split into few types to quickly find a valid move location. Index of a (sub)-simplex may change for various reasons (hidden randomness).

Internals of CDT code: indices and labels

► Each object (point, link, triangle or simplex) is assigned two integer numbers: a label and an index.

Labels

Internals of CDT code: data structures

- Simulations are limited by CPU time consumption, while memory usage is not a bottle-neck.
- ➤ To enhance the acceptance rate of the moves and gain fast access to necessary data maximal information philosophy is adopted.
- ➤ Various information about points, links, triangles and simplices (but not tetrahedra) are stored:

```
struct triangle
{
   int p[3];  /* Vertex labels */
   int n;  /* Coordination number */
   int s;  /* Simplex which owns this triangle */
   int i;  /* Index */
   int h;  /* Hash code of triangle */
   int next;  /* Next triangle in hash table list */
}
```

Internals of CDT code: hash tables

- ➤ To perform a fast check if a *link* or *triangle* with given vertices exists, a **hash table** is used.
- Verification of tetrahedron existence is more complicated and demands making a loop around a triangle.

Given labels of vertices p[0] < p[1] < p[2] we calculate the hash code,

$$h = (p[0] \ll 8) \text{ xor } (p[1] \ll 4) \text{ xor } p[2]$$

Triangles with the same *hash code* are stored in a singly-linked list.

Numerical setup

- ▶ Monte Carlo algorithm probes the space of configurations with the probability $P[\mathcal{T}] = \frac{1}{7}e^{-S[\mathcal{T}]}$.
- ➤ To calculate the expectation value of an observable, the path integral is approximated by a sum over a finite set of Monte Carlo configurations.

Numerical setup

- ▶ Monte Carlo algorithm probes the space of configurations with the probability $P[\mathcal{T}] = \frac{1}{Z}e^{-S[\mathcal{T}]}$.
- ► To calculate the **expectation value of an observable**, the path integral is approximated by a sum over a finite set of

What can we measure?

From the computational point of view, the basic observables are the parameters which appear in the bare action:

 N_0 number of vertices

 N_{41} number of simplices of type $\{4,1\}$

 N_{32} number of simplices of type $\{3,2\}$

The number of all remaining sub-simplices can be expressed as a linear combination of above parameters.

The simplest observable providing information about spacetime geometry is **spatial volume** n_t defined as a number of tetrahedra building a three-dimensional slice $t = 1 \dots T$.

(Proper definition of e.g. curvature is non-trivial.)

De Sitter phase - background geometry

- In phase C the time translation symmetry is spontaneously broken and the three-volume profile n_t is bell-shaped.
- ▶ The average volume $\langle n_t \rangle$ is with high accuracy given by formula

$$\langle n_t \rangle = H \cos^3 \left(\frac{t}{W} \right)$$

a classical vacuum solution.

De Sitter phase - properties

- Phase C, the so called de Sitter phase, is physically most interesting.
- ▶ A four-dimensional background geometry emerges dynamically. The background geometry corresponds to Euclidean de Sitter space (S^4) , a classical vacuum solution.
- It is also possible to study quantum fluctuations around it.

Autocorrelation: MIXMAX vs Ran3

The MC moves introduce only small local changes and the configurations may be correlated for a long time.

Autocorrelation time: MIXMAX vs Ran3

Often in the vicinity of phase transition, a phenomenon of critical slowing down is observed.

It takes longer for the system to thermalize, amplitude of fluctuations increases and the autocorrelation time grows.

The new bifurcation phase

- ▶ The spatial volume profile $\langle n_t \rangle$ is similar as in phase C. But the agreement with $\cos^3(t)$ is broken.
- ► The transfer matrix bifurcates into two branches. At some volume the kinetic term splits into a sum of two shifted Gausses.
- Every second slice **singular** vertices of very high order appear. New **order parameter**: $\max_{v} o(v)$.
- Not captured by global properties of the triangulation (N_0, N_{32}) .

The new bifurcation phase

- ▶ The spatial volume profile $\langle n_t \rangle$ is similar as in phase C. But the agreement with $\cos^3(t)$ is broken.
- The transfer matrix bifurcates int Difficult to dissolve ome volume the kinetic term splits into a sum of two shifted Gausses.
- Every second slice **singular** vertices of very high order appear. New **order parameter**: $\max_{v} o(v)$.
- ▶ Not captured by global properties of the triangulation (N_0, N_{32}) .

Toroidal topology - phase transitions

For the toroidal topology, the C_{bif}/C_{dS} transitions reveals a hysteresis and very long **thermalization time**. Reason?

- ► Strong finite size effects
- Phase transition order depends on topology?

Motivation

- Limited single-core performance (gates, frequency, voltage, power)
- Cheap access to many cores

Naive parallelization is used to multiply the statistic, but ...

- ... a thermalized configuration is needed.
- ► Thermalization stage is a bottleneck
- Critical slowing down near phase transition
- Need to speed-up a single Monte Carlo Markov chain ⇒ parallelization
- ▶ Large minimal triangulation ⇒ strong finite size effects ⇒ large triangulations
- Simple parallelization does not work ...

Simple parallelization

A simple parallel algorithm, where many threads modify the same triangulation, has a very large overhead

- Detect collisions
- ► Thread synchronization: withdraw a move
- Move weight depends on global parameters threads are coupled

Parallel rejection

(by Jack Laiho, Phys. Rev. D 96 (2017) 064015)

- ► In some regions, the acceptance rate of MC moves is very low (critical slowing down)
- ▶ In such case a **parallel rejection** algorithm can be applied
- Multiple threads execute a series of attempted moves
- When one of them succeeds, rest of the threads are stopped and the triangulation is updated
- ► No collision detection is necessary
- ➤ To guarantee compatibility with the scalar version, *youngest* move has to be chosen (wait)
- ▶ Each attempted move is identified by three *random* numbers:
 - which move
 - **where** to make the move
 - whether to make the move (detailed balance)
- ▶ A block of random numbers is precomputed and split between threads. Synchronization with the RNG (separate thread).

Parallel rejection - diagram

CPU time

Parallel rejection - issues

- For three threads we gained 100% speed up for very small acceptance rate $\frac{1}{400}$
- Different move types significantly vary in acceptance rate
- Fixed number of random numbers (3) consumed per attempted move
- Replicability, compatibility with scalar version
- Thread synchronization is expensive
- Low level libraries, single barrier from pthreads
- Atomic operations (counter), busy waiting

- ▶ In this method we run a number of processes (replicas) with slightly different values of coupling constants.
- Periodically, the configurations are exchanged between processes with a certain probability (detailed balance).
- A *CDT configuration* is a heavy object (triangulation + additional data). Instead, the sets of a few coupling constants (denoted as β) are exchanged.

- ▶ In this method we run a number of processes (replicas) with slightly different values of coupling constants.
- Periodically, the configurations are exchanged between processes with a certain probability (detailed balance).
- ▶ A *CDT configuration* is a heavy object (triangulation + additional data). Instead, the sets of a few coupling constants (denoted as β) are exchanged.

Exchange probability fulfills the detailed balance condition,

$$\begin{split} P(A) &= P_1(\mathcal{T}_1) P_2(\mathcal{T}_2), \quad P(B) = P_2(\mathcal{T}_1) P_1(\mathcal{T}_2), \\ W(A \to B) &= \min\{1, \frac{P_2(\mathcal{T}_1) P_1(\mathcal{T}_2)}{P_1(\mathcal{T}_1) P_2(\mathcal{T}_2)}\} \end{split}$$

► Implementation: Managing process and *Linux message queues* to notify *working* processes when and with whom exchange

Exchange probability fulfills the detailed balance condition,

$$P(A) = P_1(T_1)P_2(T_2), \quad P(B) = P_2(T_1)P_1(T_2),$$
 $W(A \to B) = \min\{1, \frac{P_2(T_1)P_1(T_2)}{P_1(T_1)P_2(T_2)}\}$

► Implementation: Managing process and Linux message queues to notify working processes when and with whom exchange

Autocorrelation time

- ► History of one configuration (Markov chain) contributes to many simulations and reduces the autocorrelation time.
- Exchange rate has to be higher than the autocorrelation time
- ► For 31 replicas a significant decrease of autocorrelation time is observed. A point near A/C transition (toroidal topology):

Replica exchange - hysteresis

Monte Carlo history of the relevant order parameter $\operatorname{Max} o(p)$ for single value of coupling constants. Visible jump and exchanges.

Replica exchange - hysteresis

Average value of the order parameter as a function of coupling constant. Comparison: replica exchange vs single threaded.

Thank You!