Precision Monte Carlo Measurements using MIXMAX generator

Alexander Howard

presented by
Gabriele Cosmo

4th July 2018

Precision Monte Carlo Measurements using MIXMAX generator

- 1. Introduction
- 2. Application and requirements for a PRNG
- 3. Application testing Summary
- 4. Defaults in Geant4/CLHEP
- 5. Conclusions

Alexander Howard, Imperial College London

presented by Gabriele Cosmo (CERN)

Summary from Previous Meeting

- Dieharder studies presented last time were erroneous
 - Incorrect combination of bits
- Geant4 (CLHEP) now has MixMax as it's default
- MixMax Benefits:
 - Quality of random numbers
 - High granularity, un-correlated, lack of artefacts
 - No seeding issues, particularly with multi-threading
 - Performance: faster than other generators (e.g. Ranlux)

Application Testing

- Results are presented at the application level:
 - Not just MixMax, but CLHEP, Geant4 and the application code
- One "run" (only 1 second of experimental data...)
 corresponds to more than 9 years of sequential CPU time
 - CSCS (Swiss Computing Centre) "Mönch" cluster
 - More than 700 nodes with a selection of 32GB, 64GB, 256GB RAM
 - Each node has 20 cores with hyperthreading
 - http://www.cscs.ch/computers/moench/index.html
- 500 million events create a lot of random numbers
- Critical is the timing distribution between events (time of the annihilation)
 - Otherwise randomness over/underestimated
 - Scattering and other flight time effects have bias

Testing of MIXMAX

- "Simple" problem: continuously uniform (Poisson) distribution between event times
- All tests performed at the Geant4 level in MT mode
 MixMax → CLHEP → Geant4
- Multi-threaded mode
 - Seeds distributed between workers and master
- Bunches of events per thread
 - Either 4 or 40 threads per node were tested
 - Risk: if problems were observed it's a coupled system
 - But everything seems okay

The SAFIR project (goal)

SAFIR: Evaluation of the Performance of ASICs at High Count Rate

SAFIR - Small Animal Fast Insert for MRI

Robert Becker, Alfred Buck, Chiara Casella, Simon Corrodi, Günther Dissertori, Jannis Fischer, Alexander Sinclair Howard, <u>Mikiko Ito</u>, Parisa Khateri, Werner Lustermann, Ulf Röser, Geoffrey Warnock, and Bruno Weber

Fast (temporal) Small Animal PET with simultaneous MRI

 $>100MBq/cm^3$

Application Testing – PET scanners

- PET relies on the simultaneous measurement of annihilation gammas
- Random contribution and estimation is critical
 - Image quality, Signal:Noise and normalisation (activity quantification)
- Due to the (unusually) high activities in our proposed scanner the Coincidence Time Window (CTW) needs to be very short
- Performance of detector needs to be optimised
 CTR, scintillator, geometry
- Continuity (granularity) in event times is crucial

Application PRNG Sensitivities

- Seeding between runs → /dev/urandom
 - Unnecessary for MixMax!
- Granularity vs. time interval
- Multithreading (seeding, warm-up, distribution between workers)
- Geant4 Radioactive Decay Module:
 - Internal memory/thread-race
 - Events are biased to occur within a measurement window

Radioactive Decay Time Window

- Set decay time window to 1s
- Record the decay time of ²²Na
- Geant4 RDM uses G4UniformRand() across the time window and weighted by the half-life
- Essentially flat for ²²Na (>2 year half-life)
- Alternative approach would be to time-order events, however, might lead to unforeseen structure and requires modification of Geant4 model (RDM)

Time between events

- Should follow the radioactive decay law (only one isotope)
- Poisson probability distribution

 t_i follows a uniform distribution between t_0 and t_f $\Delta t_i = t_{i+1} - t_i$ follows a exponential distribution between 0 and t_f

Expectation

- 1 second simulation with a 64-bit generator should give a granularity (minimum spacing between events) of 1e⁻¹⁹s
- 465.7ps for a 32-bit generator (signed integer)
- The results for any generator (32- or 64-bit) should be a smooth exponential distribution

Correlations vs. Uncorrelations

- In PET imaging lines of response (LOR) are generated by creating coincidence pairs of 511 keV photopeak events (positron annihilation)
- To estimate performance and correctly combine multiple hits it is crucial to be able to determine uncorrelated (random) pairs as well as true lines of response
- This problem is particularly acute for high activities (acquisition/imaging times)
 - Useful for high-throughput (cost)
 - Required for time propagation (functional/4-D images)
- The following plots show the situation with two random number generators:
 Ranlux64 and MixMax

Granularity and gross structure an issue with "Ranlux64"

A seeding issue?

100k G4UniformRand() events - MixMax

4th July 2018

Alex Howard, Mixmax Athens Workshop

MixMax – 500 million events

Totally smooth distribution!

4th July 2018

Alex Howard, Mixmax Athens Workshop

Summary

- MixMax works very well for this application
- No other generator gave these results in Geant4
- Possible to estimate random correctly
- Crucial for understanding and developing detector timing performance as well as analysis algorithm investigation
- An extension in Geant4:
 - Use run and event number to generate the seeds
 - Makes storing and reproducing random engine status trivial

Conclusions

- MixMax solved a number of problems with random numbers in Geant4 applications
- Especially important for high statistics precise random estimations in PET detectors (decay-time pile-up).
- Seeding issues are also solved by MixMax, particularly important for multithreading marshalling
- Seed storing and reproducing could be simplified if a combination of event and run number gave the seed (only works with MixMax)
- Since release 10.4 of Geant4, the included CLHEP default uses MixMax

Backup/Previous slides

CLHEP Tests (from Kostas)

CLHEP Tests (from Kostas)

CLHEP Tests (from Kostas)

Random Number Testing

Create random numbers in a flat distribution:

- 1) Unit test: RNG.flat()
- 2) Unit test: G4UniformRand()3) G4UniformRand() inside an application
- 4) Time distribution of decay window biased particles from RDM

Outputs:

- 1) Measure time for 100000 trials
- 2) Determine time interval between events (granularity)
- Record created times (1s interval)
- Sort in increasing times
- »Plot the distribution of time intervals between events (necessary requirement for random event pile-up studies)

PRNGs tested:

1) Ranecu

2) Ranlux

3) Ranshi

4) Ranlux64

5) Mersenne Twist

6) MixMax

Geant4-10.2-ref02

CLHEP 2.3.1.1 (November 2015)

Geant4-10.2-ref06

CLHEP 2.3.3.0