Recent measurements of identified hadron spectra and multiplicities in Be+Be and Ar+Sc collisions at SPS energies

Maciej Lewicki
mlewicki@ift.uni.wroc.pl

University of Wrocław
Institute of Theoretical Physics
Preliminary results on π^+, π^-, K^+, K^- and p on:

- Transverse momentum distributions.
- Rapidity distributions.
- Mean multiplicities.

Produced in strong and electromagnetic processes in primary interactions:

- **Be+Be** – 20% most central collisions (NA61/SHINE preliminary).
- **Ar+Sc** – 5% most central collisions (NA61/SHINE preliminary).

Will be compared to available World data on $p+p$, $Au+Au$ and $Pb+Pb$:

Particle identification — \textit{tof} and dE/dx
Event selection in Ar+Sc collisions

Centrality classes – Projectile Spectator Detector

- The PSD is located most downstream on the beam line and measures the projectile spectator energy E_F of the non-interacting nucleons of the beam nucleus.
- The energy measured by the PSD is used to select events classes corresponding to the collision centrality.
Section 1

Identified hadrons spectra
Spectra in y and p_T – Be+Be @ 30A GeV/c

Preliminary results from "dEdx" analysis for 0-20% centrality

- π^-
- π^+
- p

- K^-
- K^+

NA61/SHINE preliminary
Spectra in y and p_T – Be+Be @ 150A GeV/c

Preliminary results from "dEdx" analysis for 0-20% centrality
Section 2

Inverse slope parameter
m_T distributions

Kaon spectra measured in mid-rapidity ($0 < y < 0.2$) are fitted with exponential function in order to extract the inverse slope parameter T.

No systematic deviation from the exponent is observed in measured m_T region at all collision energies.
Inverse slope parameter T in $\text{Be}+\text{Be}$ collisions (NA61/SHINE preliminary) is close to $\text{p}+\text{p}$ measurements.
Inverse slope parameter T

Extrapolation of Ar+Sc points to $T(y \approx 0)$ falls close to Pb+Pb, while smaller systems are placed significantly lower.

NA61/SHINE

- **Ar+Sc**
 - K^+
 - K^-

- **Be+Be**
 - K^+
 - K^-

- **p+p**
 - K^+
 - K^-

NA49

- **Pb+Pb**
 - K^+
 - K^-

- **C+C**
 - K^+
 - K^-

- **Si+Si**
 - K^+
 - K^-

Preliminary data from NA61/SHINE and NA49 experiments.
Section 3

Rapidity distributions
Extrapolation in p_T

- In order to obtain dn/dy yields, the data is extrapolated in p_T to account for unmeasured regions.

- Exponential dependence in p_T is assumed:

$$\frac{1}{p_T} \frac{d^2n}{dp_T dy} = \frac{dn/dy}{T \cdot (m_K + T)} \cdot e^{-(m_T - m_K)/T}$$

- The function integral outside the acceptance region is added to the measured data points (typically of the order of 1%).
Rapidity distributions of kaons from Be+Be collisions
0-20% centrality, tof-dEdx and dEdx methods combined

NA61/SHINE preliminary
Obtaining "4\pi" acceptance: extrapolation in y

Two symmetrically placed gaussians are used to construct the fitting function:

$$f_{\text{fit}}(y) = A \times \left(\frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left(- \frac{(y - y_0)^2}{2\sigma_0^2} \right) + \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left(- \frac{(y + y_0)^2}{2\sigma_0^2} \right) \right)$$

$\leftarrow \text{Be+Be @150A GeV/c}$

Symmetry with respect to $y=0$ is assumed at all beam energies.
Kaon rapidity distributions from Ar+Sc collisions

0-5% centrality, dEdx analysis method only

Shape parameters: y_0 and σ are fixed to values obtained in NA49’s Pb+Pb. Measurements of tof will add data in $y \approx 0$ region in the near future.
Proton rapidity distribution

Comparison with Pb+Pb

Proton rapidity distribution measured in:
- p+p (preliminary)
- Be+Be (0-20% centrality)

Maciej Lewicki (UWr)
Proton rapidity distribution

Comparison of Be+Be and p+p collisions

Pronounced qualitative difference of proton rapidity spectrum between light systems (p+p, Be+Be) and Pb+Pb in 40A GeV/c.
Section 4

Mean multiplicities with comparison to other systems
\[\langle K^+ \rangle / \langle \pi^+ \rangle \]

\[\langle K^+ \rangle / \langle \pi^+ \rangle \text{ for } \text{Be}+\text{Be} \text{ close to } \text{p}+\text{p}. \]
\[\text{Ar}+\text{Sc} \text{ placed in between } \text{p}+\text{p} \text{ and } \text{Pb}+\text{Pb}. \]
K^+ / π^+ at $y \approx 0$

K^+ / π^+ at $y \approx 0$ is similar for \textbf{Be+Be} and \textbf{p+p} and largely different for \textbf{Pb+Pb}.
\[\langle K^- \rangle / \langle \pi^- \rangle \]

\[\langle K^- \rangle / \langle \pi^- \rangle \] for Be+Be close to \(p+p \).
Ar+Sc placed in between \(p+p \) and Pb+Pb.
K^-/π^- at $y \approx 0$

K^+/π^+ at $y \approx 0$ for $\text{Be}+\text{Be}$ is lower than results for $\text{p}+\text{p}$ collisions.
Energy dependence of K^+/π^+

"the horn" plot

No "horn"-like structures visible in intermediate size systems: Be+Be and Ar+Sc.
Conclusions

Preliminary results on:
- 20% most central Be+Be collisions were presented.
- 5% most central Ar+Sc collisions were presented.

- Spectra in y and p_T of π^+, π^-, K^+, K^- and p were discussed.

- Inverse slope parameter T measured in Be+Be collisions is close to p+p, while T obtained for Ar+Sc closer resembles results from Pb+Pb.

- The measurements of K^+/π^+ and K^-/π^- ratios show similar trend in system size dependence – data on Be+Be is usually closer to p+p, while results on Ar+Sc are placed in between p+p and Pb+Pb.

- No "horn"-like structures seen in energy dependence of K^+/π^+ ratios measured in intermediate size systems: Be+Be and Ar+Sc.

More results on the subject will follow in the near future!
Thank you for your attention!

Event of Ar+Sc collision recorded by NA61/SHINE
Backup slides