HL/HE-LHC projections & Yellow Report status

Stefania Gori UC Santa Cruz

Double Higgs Production at Colliders Workshop

Fermilab, September 4, 2018

The HL/HE LHC workshop

Timeline:

- Kick-off meeting, Oct 30-Nov.1, 2017, defining goals & timeline
- Fermilab meeting, April 4-6, 2018
- CERN meeting, June 18-20, 2018, outlines of the several chapters completed
- December 2018: Yellow Report completion
- 2019: European Strategy for Particle Physics

Goals:

- Detailed assessment of the physics reach of the upgraded detectors with 3 ab-1
- Careful assessment of the systematic limitations for physics measurements
- Begin a more systematic study of the physics reach of the HE-LHC. <u>New ideas?</u>
 (27 TeV with ~ 5 times more lumi)

Structure:

5 working groups

- WG 1: Standard Model
- WG 2: Higgs
- WG 3: Beyond the Standard Model
- WG 4: Flavour
- WG 5: QCD matter at high density

S.Gori 2/18

The Higgs working group

Conveners: SG, F.Riva (theory), M.Kado (ATLAS), M.Cepeda (CMS), P.Ilten (LHCb)

1. Precision Measurements (indirect BSM probe through EFT)

1.1 Low energyHiggs couplings differential measures.

2. Rare Higgs Processes & New resonances

2.1 SM Higgs boson

2.2 New Higgs bosons

Twiki page: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HLHEWG2

194 subscribers as of Sept.1, 2018

Draft of the document @ https://www.overleaf.com/17188577twzzbtqqnyjf#/65498653/

S.Gori 3/18

Structure of the Higgs Chapter

After the CERN Kick-off meeting, we have defined the goals/topics:

- 1. Introduction: Main goals and timeline
- 2. Precision Higgs physics (parts in collaboration with SM WG1)
- 3. Di-Higgs production and Higgs self couplings
- 4. Other high energy probes
- 5. The Higgs boson mass and width
- 6. Invisible decays of the Higgs boson
- 7. Higgs flavor and rare decays (in collaboration with flavor WG4)
- 8. Global view with HE/HL-LHC
- 9. BSM Higgs
- 10. Conclusions and outlook

The di-Higgs effort

Editors: Luca Cadamuro (CMS), David Wardrobe (ATLAS), Marc Riembau (theory)

- a. SM Calculation (Dawson, Heinrich et al.)
- b. Double Higgs measurements and trilinear coupling (ATLAS: Elisabeth Petit)
- c. Indirect probes of the trilinear coupling through differential distributions measurements (CMS: Wardle, Senz, Scott, Langford)
- d. Indirect probes through single Higgs boson production (Maltoni et al., Englert et al., Bizon et al.)
- e. HE prospects (Goncalves et al., Homiller & Meade)
- f. Theory Implications (including a critical view of the validity of direct and indirect trilinear couplings measurements (Di Vita et al.)
- g. Interpretation in the context of the chiral Lagrangian (Buchalla et al.)
- + Implications for models for EW phase transition / SUSY models etc

Remote meeting, May 29, https://indico.cern.ch/event/731833/

S.Gori 5/18

The SM cross section

* New recommendation of the LHC Higgs cross section WG

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH

\sqrt{s}	13 TeV	14 TeV	(HE) 27 TeV
NLO [fb]	$27.78 {}^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1{}^{+12.7\%}_{-11.1\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2{}^{+0.7\%}_{-3.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9{}^{+1.3\%}_{-3.9\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	±3.4%
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096

gg fusion

exact NLO contribution (full dependence on M_t) + NNLO corrections computed in the large- M_t approximation.

Grazzini et al., 1803.02463

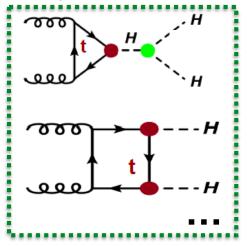
* Sub-leading production modes available as well:

m _h (GeV)√s = 7 TeV	√s = 8 TeV	√s = 13 TeV	√s = 14 TeV
124.5	0.320 _{-3.7%} +3.2% ±2.7 %	0.470 _{-3.1%} ^{+2.4%} ±2.6 %	1.65 _{-2.7%} +2.4% ±2.3 %	1.97 _{-2.6%} ^{+2.3%} ±2.3 %
125	0.316 _{-4.1%} +3.7% ±2.7 %	0.468 _{-3.3%} +2.8% ±2.6 %	1.64 _{-2.5%} +2.0% ±2.3 %	1.94 _{-2.6%} ^{+2.3%} ±2.3 %
125.09	0.313 _{-3.8%} +3.2% ±2.6 %	0.459 _{-3.6%} +3.2% ±2.6 %	1.62 _{-2.7%} +2.3% ±2.3 %	1.95 _{-2.3%} ^{+1.8%} ±2.4 %
125.5	0.312 _{-4.0%} +3.6% ±2.7 %	0.458 _{-3.4%} +2.9% ±2.6 %	1.63 _{-2.5%} +2.0% ±2.3 %	1.94 _{-1.9%} ^{+1.3%} ±2.3 %

27 TeV, work in progress

3g

Di-Higgs in non-linear EFT


New Physics models can easily predict modified Higgs couplings.

Particularly, from the EFT prespective:

$$\mathcal{L} \supset -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \bar{t} t - c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G_{\mu\nu}^a G^{a,\mu\nu}$$

In the SM: $c_t=c_{hhh}=1$ and $c_{ggh}=c_{tt}=c_{gghh}=0$

Di-Higgs cross section is affected by any of this coefficient

S.Gori 7/18

 $\sigma \sigma \sigma$

Di-Higgs in non-linear EFT

New Physics models can easily predict modified Higgs couplings.

Particularly, from the EFT prespective:

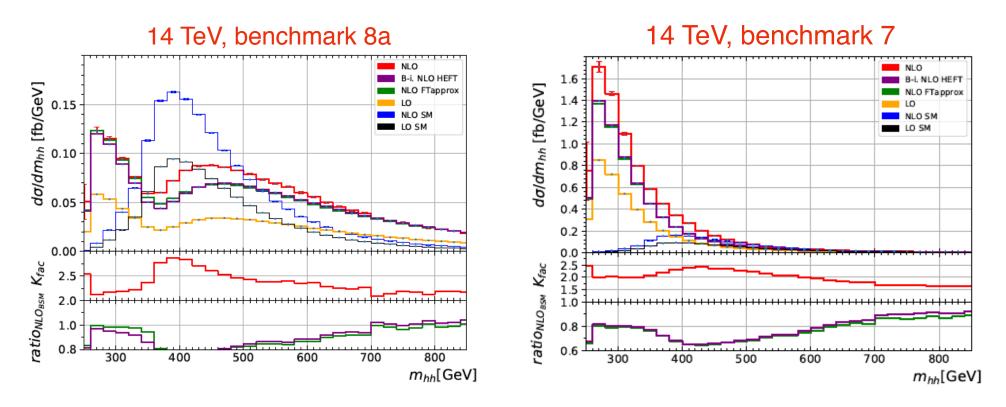
$$\mathcal{L} \supset -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \bar{t} t - c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G_{\mu\nu}^a G^{a,\mu\nu}$$

In the SM: $c_t=c_{hhh}=1$ and $c_{ggh}=c_{tt}=c_{gghh}=0$

Di-Higgs cross section is affected by any of this coefficient

Benchmarks presented in the YR:

Benchmark	c_{hhh}	c_t	c_{tt}	c_{ggh}	c_{gghh}
5	1	1	0	8/15	1/3
7	5	1	0	2/15	1/15
8a	1	1	1/2	4/15	0
SM	1	1	0	0	0

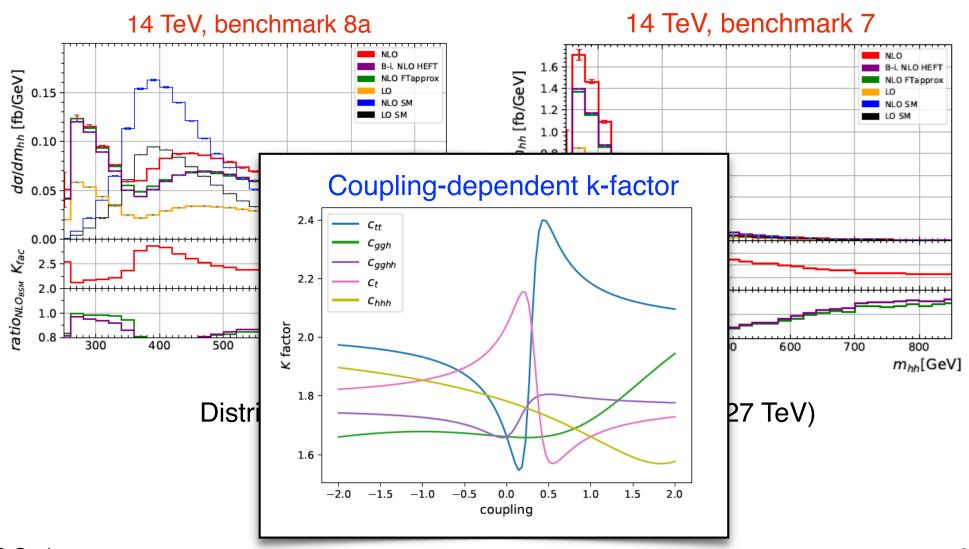

from Buchalla et al., 1806.05162

Benchmark	σ_{NLO} [fb]	K-factor	scale uncert. [%]	stat. uncert. [%]	$\frac{\sigma_{NLO}}{\sigma_{NLO,SM}}$
B ₅ [14 TeV]	59.33	1.83	+4, -15	0.36	1.8
B_5 [27 TeV]	302.21	1.79	+2, -13	0.40	2.36
B ₇ [14 TeV]	169.41	2.07	+9, -12	2.2	5.14
B_7 [27 TeV]	598.20	2.11	+8, -10	2.0	4.68
B_{8a} [14 TeV]	41.70	2.34	+6, -9	0.63	1.27
B_{8a} [27 TeV]	179.52	2.33	+4, -7	0.49	1.40

S.Gori 7/18

Differential distributions in EFT

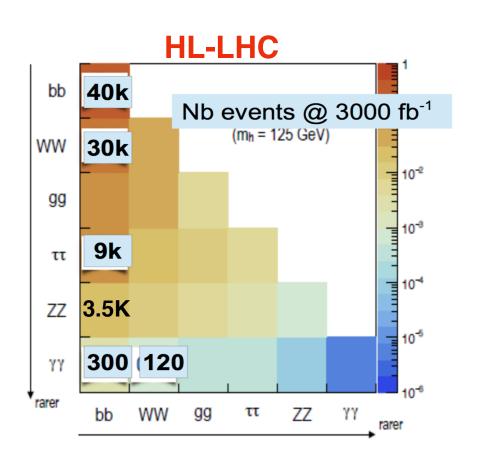
Differential cross sections are also affected by any of this coefficient

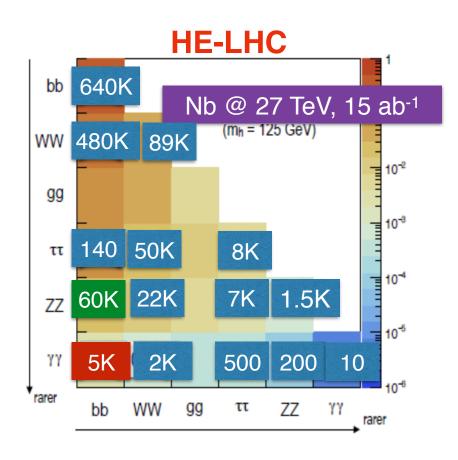

Distributions available also for the HE-LHC (27 TeV)

S.Gori 8/18

3g

Differential distributions in EFT


Differential cross sections are also affected by any of this coefficient



S.Gori 8/18

Signatures to search for

More rare channels like bbZZ can become very important

Even sub-leading productions will lead to a sizable number of events at HE eg. tthh, hh \rightarrow bbb: 20K events; VBF hh, hh \rightarrow bb $\gamma\gamma$: 300 events

S.Gori 9/18

Available projections

Channel	CMS	ATLAS
HH → bbbb	$Z(\sigma_{HH}(SM))=0.39 \ \sigma$ CMS PAS FTR-16-002	$-4.1 < \lambda_{HHH} / \lambda_{SM} < 8.7$ @95 % C.L.
HH → bbττ	1.6 xSM	0.6 σ
	CMS-TDR-019	$-4.0 < \lambda_{\text{HHH}} / \lambda_{\text{SM}} < 12.0$ @95 % C.L. ATL-PHYS-PUB-2015-04
HH → bbγγ	1.43 σ	1.5σ $0.2 < \lambda_{HHH} / \lambda_{SM} < 6.9 @95 % C.L.$
	CMS PAS FTR-16-002	(stat only) ATLAS-TDR-03
HH→ WWbb	0.45 σ CMS PAS FTR-16-002	
tt(HH→ bbbb)		0.35 σ ATL-PHYS-PUB-2016-023

Most results will be updated for YR18 mainly based on Run2 Combination to be done: Channels & experiments (ATLAS+CMS) Additional information coming from single H measurements

S.Gori 10/18

3b,c

Overview of the CMS effort

- * Section 3b: "Double Higgs measurements and trilinear coupling" development of full analyses based on fast simulation in the five main decay channels under HL-LHC conditions
- * Section 3c: "Indirect probes of the trilinear coupling through differential distributions measurements" projected constrains of k_{λ} from $h \rightarrow \gamma \gamma$ differential measurements

S.Gori 11/18

Overview of the CMS effort

- * Section 3b: "Double Higgs measurements and trilinear coupling" development of full analyses based on fast simulation in the five main decay channels under HL-LHC conditions
- * Section 3c: "Indirect probes of the trilinear coupling through differential distributions measurements" projected constrains of k_{λ} from $h \rightarrow \gamma \gamma$ differential measurements

bbbb

evaluate the impact of trigger thresholds bbWW ($2\ell 2\nu$)

show the importance of MVA methods by reproducing and optimizing the Run II analysis

 $bb\tau\tau$

extend the work published for the HGCal TDR bbZZ (4ℓ)

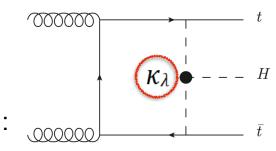
develop the analysis in a new final state $bb\gamma\gamma$

full analysis + internal cross check with projections

VBF hh

for bbbb, $bb\tau\tau$, and $bb\gamma\gamma$

constraints on VVhh coupling


Interpretations in terms of di-Higgs significance + measurement of k_{λ}

S.Gori

Overview of the CMS effort

- * Section 3b: "Double Higgs measurements and trilinear coupling" development of full analyses based on fast simulation in the five main decay channels under HL-LHC conditions
- * Section 3c: "Indirect probes of the trilinear coupling through differential distributions measurements" projected constrains of k_{λ} from $h \rightarrow \gamma \gamma$ differential measurements
- Motivated by Maltoni et al. 1709.08649 (see talk by A.Shivaji)
- Focus on associated modes Vh and tth
- ∘ Use the $h \rightarrow \gamma \gamma$ decay mode
- \circ The SM cross-section in bins of some observables (eg. $p_T(h)$):

$$\mu(\kappa_{\lambda}, C_{1}) = \frac{\sigma_{\text{NLO}}(\kappa_{\lambda})}{\sigma_{\text{LO}}(\kappa_{\lambda} = 0)} \bigg|_{C_{1}} = \frac{1 + \kappa_{\lambda} C_{1}}{1 - \kappa_{\lambda}^{2} \delta Z_{H_{\chi}}}$$

processdependent

 \circ Currently looking at $p_T(h)$ but also studying $p_T(Z)$, m_{tth} , ...

wave function renormalisation

Competitive & complementary with di-Higgs limits

Overview of the ATLAS effort

Analysis mainly based on extrapolation of Run II results Studying systematics and triggers in HL-environment

higher BR

bbbb

extrapolation of 2015+2016 analyses (1804.06174). Impact of improved b-tagging efficiency

 $bb\tau\tau$

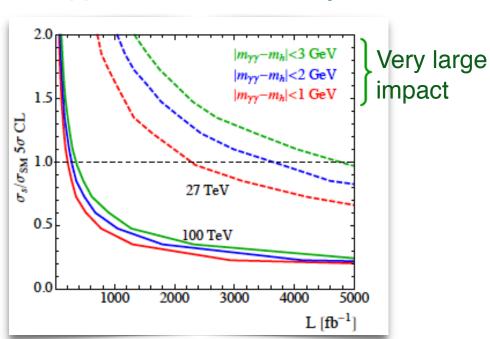
extrapolation from Run II

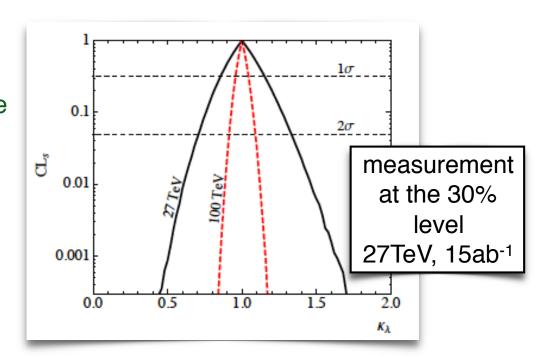
 $bb\gamma\gamma$

dedicated HL-LHC prospects analysis based on upgraded detector + new pile-up conditions

Extrapolation of the $bb\gamma\gamma$ result to HE?

Interpretations in terms of di-Higgs significance + measurement of k_{λ}


S.Gori 12/18

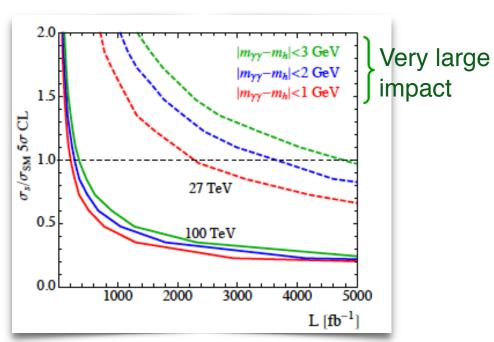

Prospects for the HE-LHC

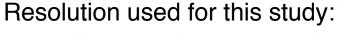
Two theory groups involved in the studies: Goncalves et al., Homiller & Meade 1802.04319

$\underline{bb\gamma\gamma}$ studies are already available:

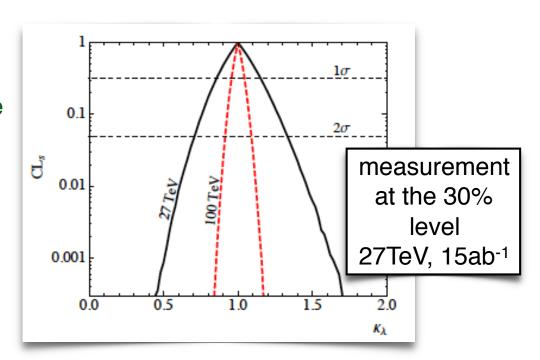
Resolution used for this study:

$$|m_{bb} - m_h| < 25 \text{ GeV},$$


S.Gori 13/18


Prospects for the HE-LHC

Two theory groups involved in the studies: Goncalves et al., Homiller & Meade 1802.04319


$\underline{bb\gamma\gamma}$ studies are already available:

$$|m_{bb} - m_h| < 25 \text{ GeV},$$

Additional studies for additional channels are welcome!

Ongoing work:

Full 27 TeV Delphes analysis using upgraded detector configuration [M.Selvaggi+G.Ortona]

ATLAS rescaling of the HL bb $\gamma\gamma$ projection

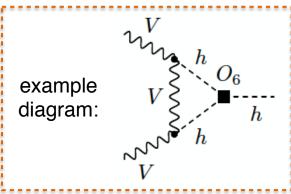
S.Gori 13/18

3d

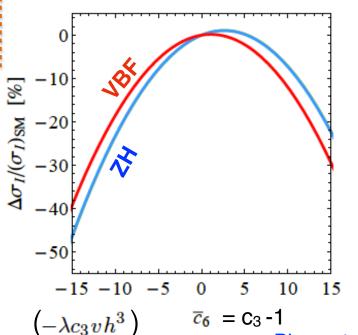
Single Higgs vs. di-Higgs data

Overview of the impact of single Higgs measurements in the determination of the Higgs trilinear coupling, k_{λ}

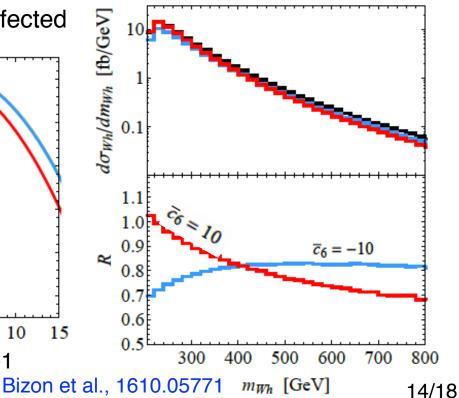
Bizon, Gorbahn, Haisch, Maltoni, Pagani, Shivaji, Zanderighi, Zhao


S.Gori 14/18

Single Higgs vs. di-Higgs data


Overview of the impact of single Higgs measurements in the determination of the Higgs trilinear coupling, k_{λ}

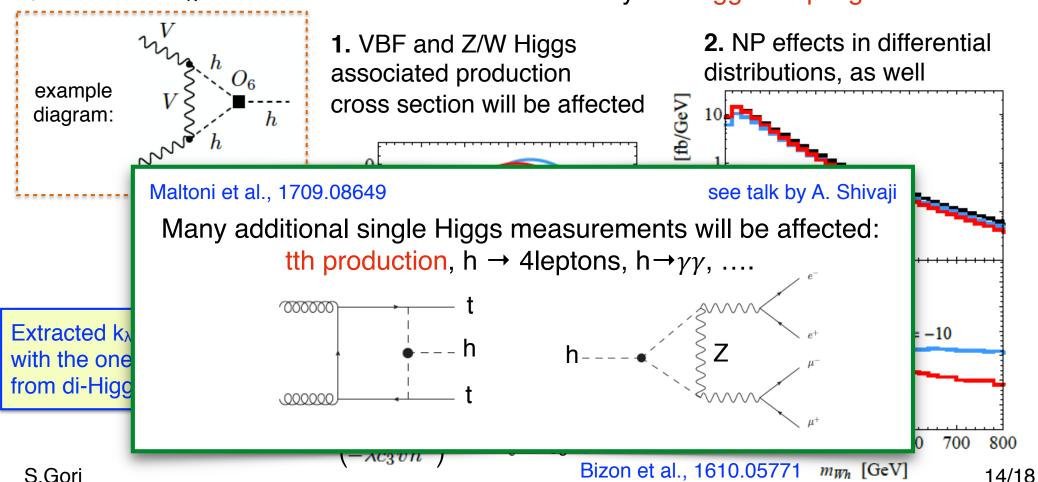
Bizon, Gorbahn, Haisch, Maltoni, Pagani, Shivaji, Zanderighi, Zhao


* A value of k_{λ} different from the SM one will modify the Higgs couplings to W and Z

1. VBF and Z/W Higgs associated production cross section will be affected

2. NP effects in differential distributions, as well

Extracted k_{λ} is **competitive** with the one extracted from di-Higgs searches


3d

Single Higgs vs. di-Higgs data

Overview of the impact of single Higgs measurements in the determination of the Higgs trilinear coupling, k_{λ}

Bizon, Gorbahn, Haisch, Maltoni, Pagani, Shivaji, Zanderighi, Zhao

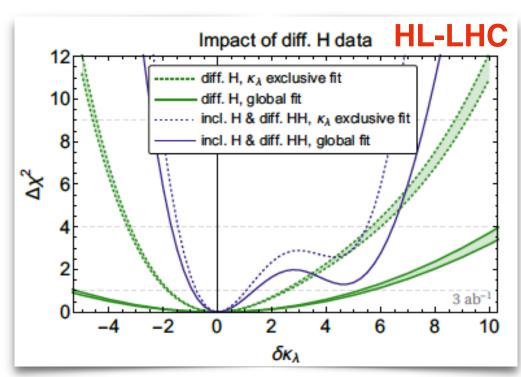
* A value of k_{λ} different from the SM one will modify the Higgs couplings to W and Z

S.Gori

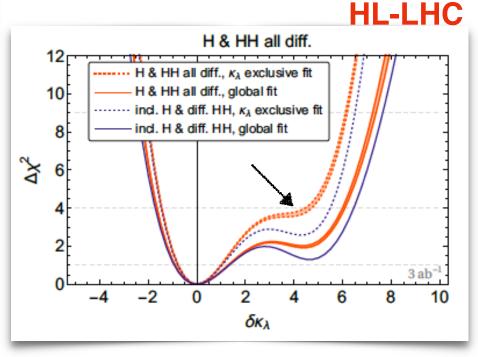
Global fits (di-Higgs+single Higgs)

Importance of global fits to extract the maximum amount of information on k_{λ}

EFT fit performed in the 10-dimensional space: δy_t , δy_t , δy_τ , δc_z , c_{gg} , $c_{\gamma\gamma}$, c_{zz} , $c_{z\square}$, $c_{z\gamma}$, κ_λ


Contribution by di Vita, Durieux, Gu, Liu, Panico, Riembau, Vantalon

S.Gori 15/18


Global fits (di-Higgs+single Higgs)

Importance of global fits to extract the maximum amount of information on k_{λ}

EFT fit performed in the 10-dimensional space: δy_t , δy_b , δy_τ , δc_z , c_{gg} , $c_{\gamma\gamma}$, c_{zz} , $c_{z\square}$, $c_{z\gamma}$, κ_λ

Contribution by di Vita, Durieux, Gu, Liu, Panico, Riembau, Vantalon

Crucial impact of systematic uncertainties. Several benchmarks for HE will be presented

Di Vita et al., 1704.01953

Implications for NP models

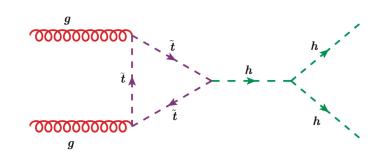
The measurement of the Higgs trilinear coupling

- * is crucial for a self-consistency check of the SM potential
- * has implications on many NP models

Origin of the baryon asymmetry:

models for strong first order phase transitions example: scalar singlet extended SM

see eg.


Profumo et al., 1407.5342 Huang et al., 1512.00068 Carena et al., 1801.00794

Hierarchy problem:

SUSY models with light stops

see eg.

Huang et al., 1711.05743

Complementarity with the Higgs coupling precision program and direct searches for new particles

S.Gori 16/18

Plan & timeline

- Now

- * Experimental results ready by the end of September
- * Final public notes, mid. October
- * "Simple" combination of ATLAS and CMS di-Higgs results, end of October Implementation: combining CMS full sim studies w/ ATLAS projections need to understand correlations in systematics (theory+experiment)
- Deadline for theory contributions, end of October
- * Final edits and revisions, November
- * Higgs chapter of the Yellow Report ready! mid. December

S.Gori 17/18

Conclusions & outlook

Di-Higgs production is a crucial process for the HL and HE LHC programs. Opportunities for new measurements!

Complementarity with the Higgs precision program

Plenty of interesting studies on the way for the HL/HE CERN Yellow report

Please contact us, if you are interested participating! SG, F.Riva (theory), M.Kado (ATLAS), M.Cepeda (CMS), P.Ilten (LHCb)

S.Gori