# Trilinear Higgs self-coupling extraction from single Higgs measurements

#### Stefano Di Vita (INFN Milano)

Double Higgs Production at Colliders Workshop @ Fermilab/LPC

Sep 4, 2018

Based on

- Grojean, Panico, Riembau, Vantalon, DV [1704.01953]
- Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, DV [1711.03978]



Trilinear Higgs self-coupling extraction from single Higgs measurements (?)

#### Stefano Di Vita (INFN Milano)

Double Higgs Production at Colliders Workshop @ Fermilab/LPC

Sep 4, 2018

Based on

- Grojean, Panico, Riembau, Vantalon, DV [1704.01953]
- Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, DV [1711.03978]



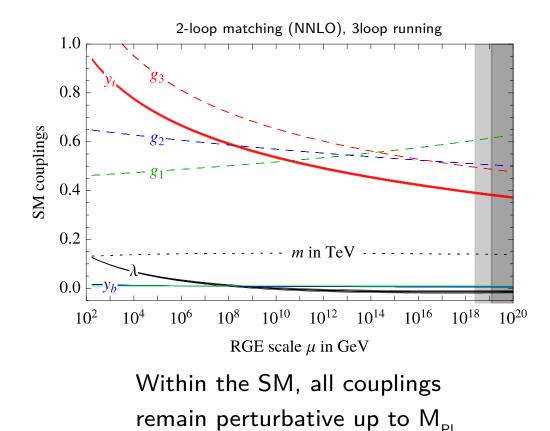


- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders



- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders

## Still missing: Higgs self-couplings


See talk by B.Di Micco

$$\left. \begin{array}{c} V^{\rm SM}(H^{\dagger}H) = -\boldsymbol{\mu}^{2}H^{\dagger}H + \boldsymbol{\lambda}(H^{\dagger}H)^{2} \\ \boldsymbol{v} = \sqrt{-\mu^{2}/\lambda} \\ \boldsymbol{m_{h}^{2}} = 2\lambda v^{2} \end{array} \right\} =$$

- SM (classical)
  - −  $(\lambda_3, \lambda_4) \Leftrightarrow (\mathsf{m}_h, \mathsf{v}) \to \textbf{verify it!}$
- SM (quantum)
  - λ controls vacuum stability (together with  $y_t$ ,  $\alpha_s$ )

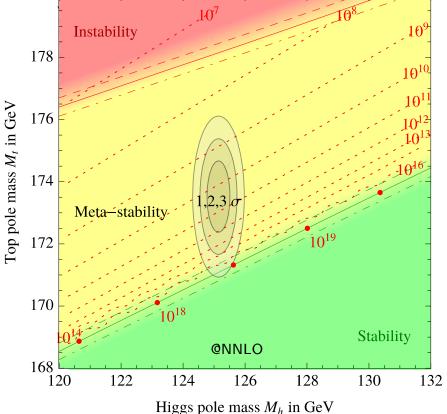
[Degrassi et al '12, Buttazzo et al '13, Bednyakov et al '15]

$$\Rightarrow V^{\rm SM}(h) = \frac{1}{2}m_h^2h^2 + \lambda_3^{\rm SM}vh^3 + \lambda_4^{\rm SM}h^4$$
$$\lambda_3^{\rm SM} = \frac{m_h^2}{2v^2} \qquad \lambda_4^{\rm SM} = \frac{m_h^2}{8v^2}$$
<sub>(at tree level)</sub>



Stefano Di Vita (INFN Milano)

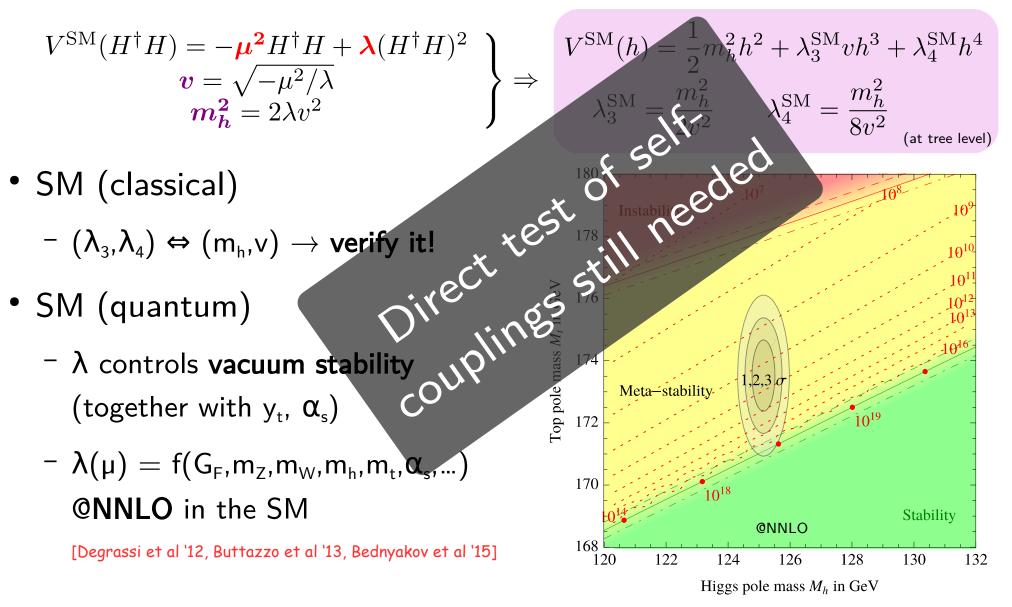
## Still missing: Higgs self-couplings


See talk by B.Di Micco

$$\left. \begin{array}{l} V^{\rm SM}(H^{\dagger}H) = -\boldsymbol{\mu}^{2}H^{\dagger}H + \boldsymbol{\lambda}(H^{\dagger}H)^{2} \\ \boldsymbol{v} = \sqrt{-\mu^{2}/\lambda} \\ \boldsymbol{m_{h}^{2}} = 2\lambda v^{2} \end{array} \right\} \Rightarrow$$

- SM (classical)
- SM (quantum)
  - λ controls vacuum stability (together with y<sub>t</sub>,  $\alpha_s$ )

[Degrassi et al '12, Buttazzo et al '13, Bednyakov et al '15]


$$V^{\rm SM}(h) = \frac{1}{2}m_h^2 h^2 + \lambda_3^{\rm SM}vh^3 + \lambda_4^{\rm SM}h^4$$
$$\lambda_3^{\rm SM} = \frac{m_h^2}{2v^2} \qquad \lambda_4^{\rm SM} = \frac{m_h^2}{8v^2} \qquad \text{(at tree level)}$$



Stefano Di Vita (INFN Milano)

## Still missing: Higgs self-couplings

See talk by B.Di Micco



Stefano Di Vita (INFN Milano)

## Higgs self-couplings are interesting!

- Non-standard  $\lambda_3$  and  $\lambda_4$  affect physics in several ways
  - hh and hhh production @ LO
  - **h** and hh production @ NLO (EW)
  - EWPO (no h!) and h production @ NNLO (EW)

from Fabio Maltoni's talk at the LHCHXSWG General meeting, July 2017 @ CERN

Stefano Di Vita (INFN Milano)

Sep 4, 2018 / HH Production at colliders / Fermilab

McCullough '13; Gorbahn,Haisch '14 (+Bizon,Zanderighi '16); Degrassi,Giardino,Maltoni,Pagani '14

VV) van der Bij '86; Degrassi,Fedele,Giardino '17; Kribs,Maier,Rzehak,Spannowsky,Waite '17

Azatov et al '15 Goertz et al '15 Cao et al '15

EFT ref's

8

## Higgs self-couplings are interesting!

- Non-standard  $\lambda_3$  and  $\lambda_4$  affect physics in several ways
  - hh and hhh production @ LO
  - **h** and hh production @ NLO (EW)
  - EWPO (no h!) and h production @ NNLO (EW)
- Current constraints on  $\sigma_{\rm hh}{}^{\rm (SM)}$  are quite loose  $\rightarrow$  still room for BSM!
- Probe V(h) to get information on the dynamics of EW phase transition
- Interesting consequences for cosmology, e.g.
  - EW baryogenesis

see e.g. Huang, Joglekar, Li, Wagner 16; Carena, Liu, Wagner 18

- Primordial gravitational waves see e.g. Huang, Long, Wang 16; Hashino, Kakizaki, Kanemura, Ko, Matsui 16

Stefano Di Vita (INFN Milano) S

Azatov et al '15 Goertz et al '15 Cao et al '15

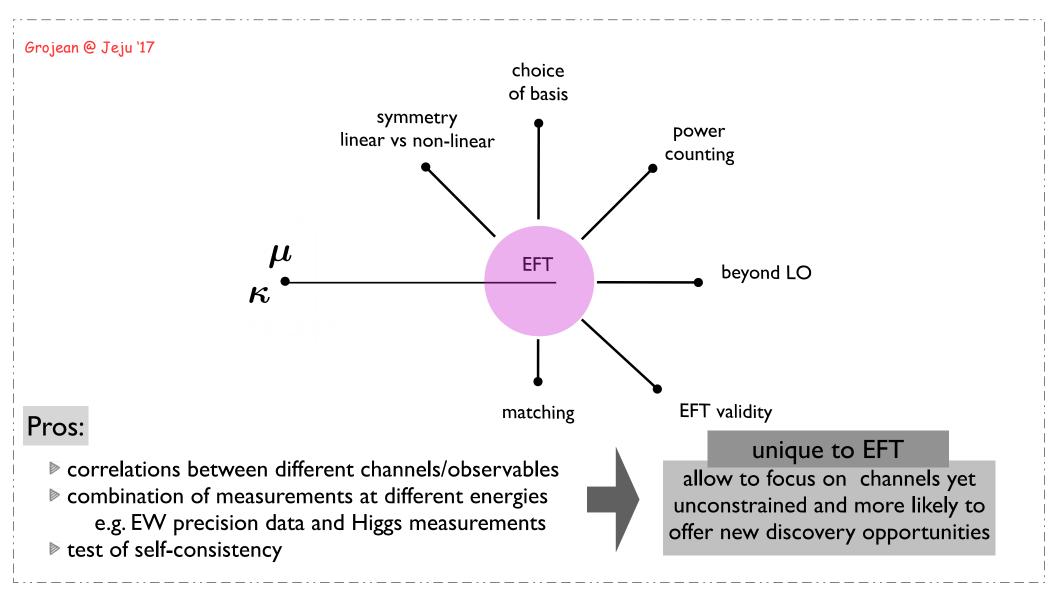
van der Bij '86;

Degrassi, Fedele, Giardino '17;

EFT ref's

McCullough '13; Gorbahn,Haisch '14 (+Bizon,Zanderighi '16); Degrassi,Giardino,Maltoni,Pagani '14

Kribs, Maier, Rzehak, Spannowsky, Waite '17


## How to approach the self-coupling?

- hVV & hww tested at ~10%: is it theoretically sound to **deform only \lambda\_3**?
- How large can  $\lambda_3$  be, from the theoretical point of view?
- If  $\lambda_3$  is large, does it **spoil** the previous **single-Higgs fits**?
- Is the **bound** on  $\lambda_3$  **stable** if we allow other BSM deformations?
- Will it be **enough** to look at **inclusive rates**?
- Can we really avoid performing **global fits** for BSM?
- Can we "replace" pp $\rightarrow$ hh with **single-Higgs observables** for  $\lambda_3$ ?

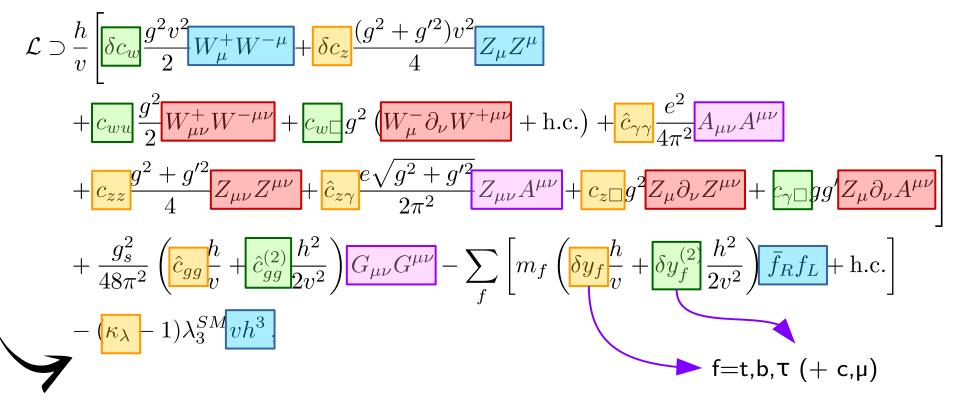


## Beyond the $\kappa$ -framework: EFT

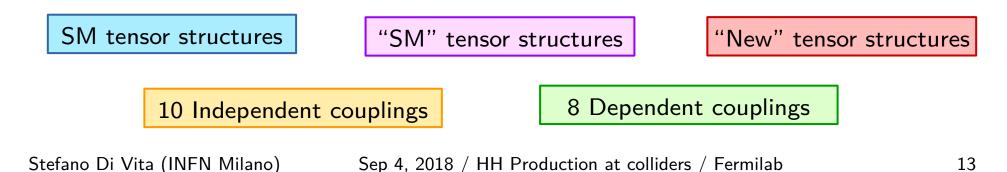
Scale " $\Lambda$ " of new physics » typical energy of the process "E"  $\Rightarrow$  EFT



### My working assumptions


- Linearly realized EW symmetry (h belongs to Higgs doublet) ⇒ SMEFT
- Keep operators O<sub>i</sub> up to dimension-6
- Operators tested in processes w/o Higgs assumed to be constrained
- Work in the Higgs basis  $\Rightarrow$  trilinear interaction  $\lambda_3 = K_\lambda \lambda_{SM} = (1 + \delta K_\lambda) \lambda_{SM}$
- Further simplifying assumptions (just to limit # of  $O_i$ )
  - no CP,L,B-L, violating  $O_i$  no dipole  $O_i$
  - flavor universality no  $\Psi^4$  (t<sup>4</sup>,ttqq,q<sup>4</sup>)

$$\mathcal{L} \supset \mathcal{L}_{SM} + \mathcal{L}_{d=5} + \mathcal{L}_{d=6} + \mathcal{L}_{d=7} + \mathcal{L}_{d=8} + \dots$$
L violating
$$\mathcal{P}$$
B-L violating subleading wrt d=6

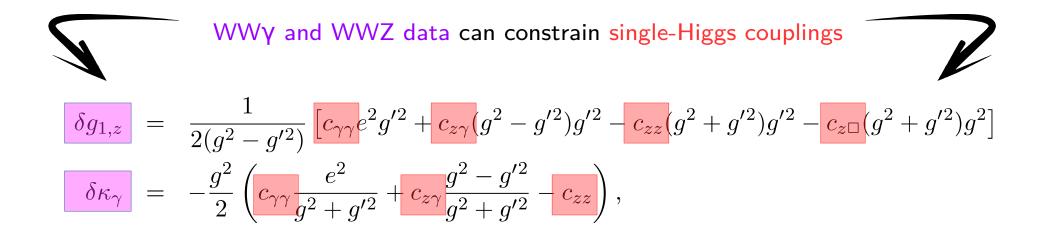

Focus on 10 O<sub>i</sub> relevant at the LHC (not just SM tensor structures! EFT  $\neq$  k-framework)  $\Rightarrow$  10 independent deformations of hGG, h $\psi\psi$ , hWW, hZZ, h $\gamma\gamma$ , hZ $\gamma$ , hhGG, hh $\psi\psi$ , hhh

## Higgs deformations in the Higgs basis

Pomarol '14; +Gupta,Riva '14; Falkowski '15; HXSWG YR4



parametrize space of d=6 operators in a way more directly connected to observable quantities in Higgs physics




#### Triple gauge couplings – Higgs interplay

Butter et al '16, Falkowski et al '16

$$\begin{aligned} \mathcal{L}_{\text{tgc}} &= igs_{\theta_W} A^{\mu} (W^{-\nu} W^+_{\mu\nu} - W^{+\nu} W^-_{\mu\nu}) \\ &+ ig(1 + \delta g_1^Z) c_{\theta_W} Z^{\mu} (W^{-\nu} W^+_{\mu\nu} - W^{+\nu} W^-_{\mu\nu}) \\ &+ ig \left[ (1 + \delta \kappa_Z) c_{\theta_W} Z^{\mu\nu} + (1 + \delta \kappa_\gamma) s_{\theta_W} A^{\mu\nu} \right] W^-_{\mu} W^+_{\nu} \\ &+ \frac{ig}{m_W^2} (\lambda_Z c_{\theta_W} Z^{\mu\nu} + \lambda_\gamma s_{\theta_W} A^{\mu\nu}) W^{-\rho}_v W^+_{\rho\mu}, \end{aligned}$$

1 extra indep

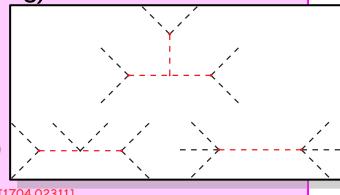


# Only large anomalous $\lambda_3$ ? Not really...

Remark: up to NLO, single-Higgs observables are **insensitive to h**<sup>4</sup>,**h**<sup>5</sup>,...

- They enter only at higher loop level
- Modifications of the full V(h) could still be allowed, in principle
- At NLO,  $\kappa_\lambda$  framework = EFT w/  $O_6$

Modification of **h**<sup>3</sup> **only** leads to loss perturbative unitarity at low energy scales in processes like


- $V^{\scriptscriptstyle L} V^{\scriptscriptstyle L} o V^{\scriptscriptstyle L} V^{\scriptscriptstyle L} h^{\scriptscriptstyle n}$
- ^ for  $|\kappa_\lambda^{}| < 10$  one gets  $\Lambda \sim 5 \text{TeV}$

[Falkowski, Rattazzi (to appear)]

- See also Di Luzio, Gröber, Spannowsky [1704.02311

Are there **classes** of BSM models that, in an EFT description:

- Either deform just Higgs self-interactions (tree-level matching)
  - e.g. SU(2) scalar quadruplets (not quite a "class")
  - \* still, 1-loop matching  $\rightarrow$  other single-Higgs couplings!
- Or enhance  $\delta \kappa_{\lambda}$  wrt the single-Higgs couplings?
  - e.g. tuned Higgs Portal can get  $\delta\kappa_{\lambda}{\sim}6$  vs other couplings O(0.1)
  - <sup>•</sup> See also De Blas et al [1412.8480], Jiang, Trott [1612.02040], Di Luzio, Gröber, Spannowsky [1704.02311]



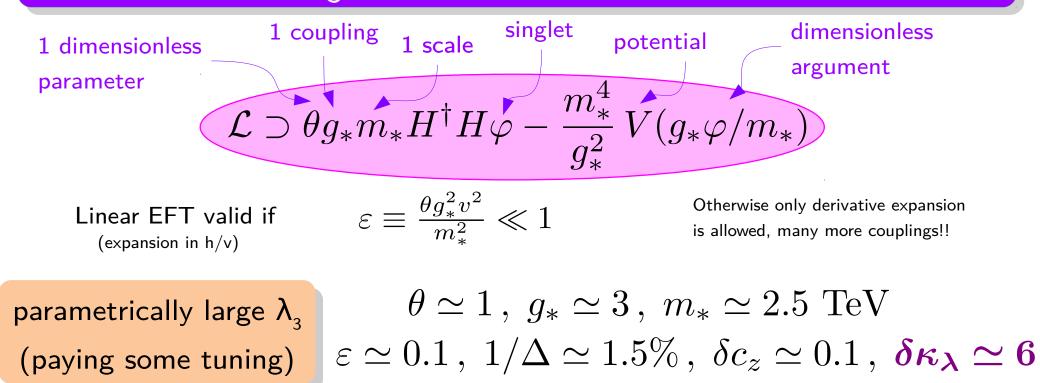
# Only large anomalous $\lambda_3$ ? Not really...

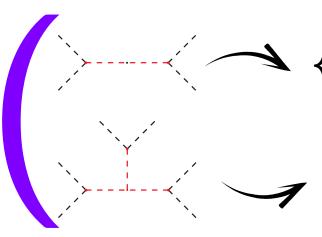
Remark: up to NLO, single-Higgs observables are insensitive to h<sup>4</sup>, h<sup>5</sup>,...

- They enter only at higher loop level
- Modifications of the full V(h) could still be allowed, in principle
- At NLO,  $\kappa_{\lambda}$  framework = EFT w/ O<sub>6</sub>

Modification of **h**<sup>3</sup> only leads to loss perturbative unitarity at low energy scales in processes like

- $V^{L} V^{L} \rightarrow V^{L} V^{L} h^{n}$
- <sup>–</sup> for  $|\kappa_{\lambda}| < 10$  one gets  $\Lambda \sim 5$ TeV [Falkowski, Rattazzi (to appear)]
- SEE also Di Luzio, Gröber, Spannowsky []


Are there **classes** of BSM models that, in an EFT description:


- t in gener N scenario Either deform just Higgs self-interactions (tree-level matching)
  - e.g. SU(2) scalar quadruplets (not quite a "class")
  - still, 1-loop matching  $\rightarrow$  other single-Higgs couplings!
- Or enhance  $\delta \kappa_{\lambda}$  wrt the single-Higgs couplings?
  - e.g. tuned Higgs Portal can get  $\delta K_{\lambda} \sim 6$  vs other couplings O(0.1)
  - See also De Blas et al [1412.8480], Jiang, Trott [1612.02040], Di Luzio, Gröber, Spannowsky [170 023111

See also talk by I.Low

Stefano Di Vita (INFN Milano)

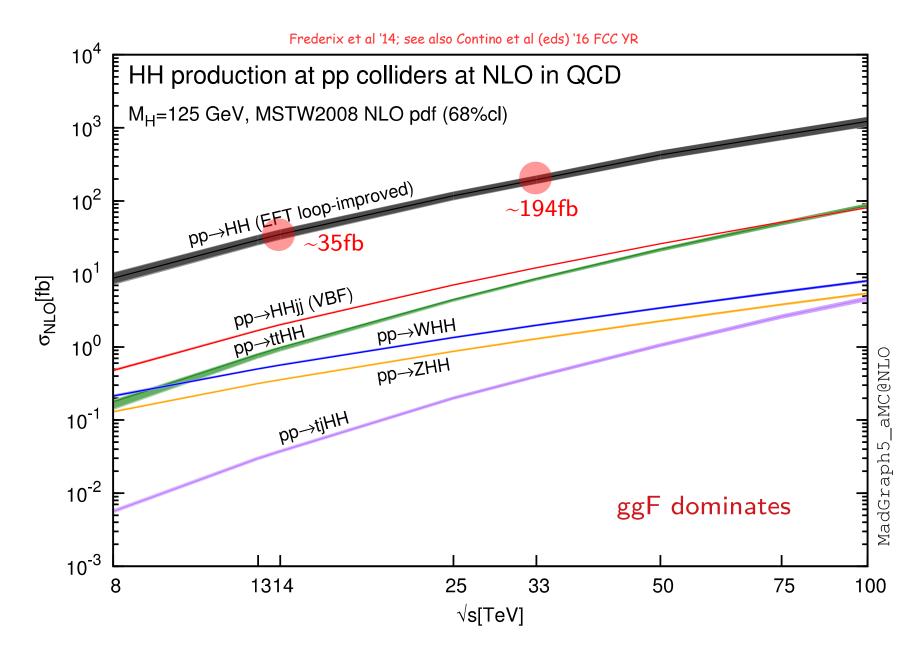
## Large $\lambda_3$ in tuned Higgs Portal





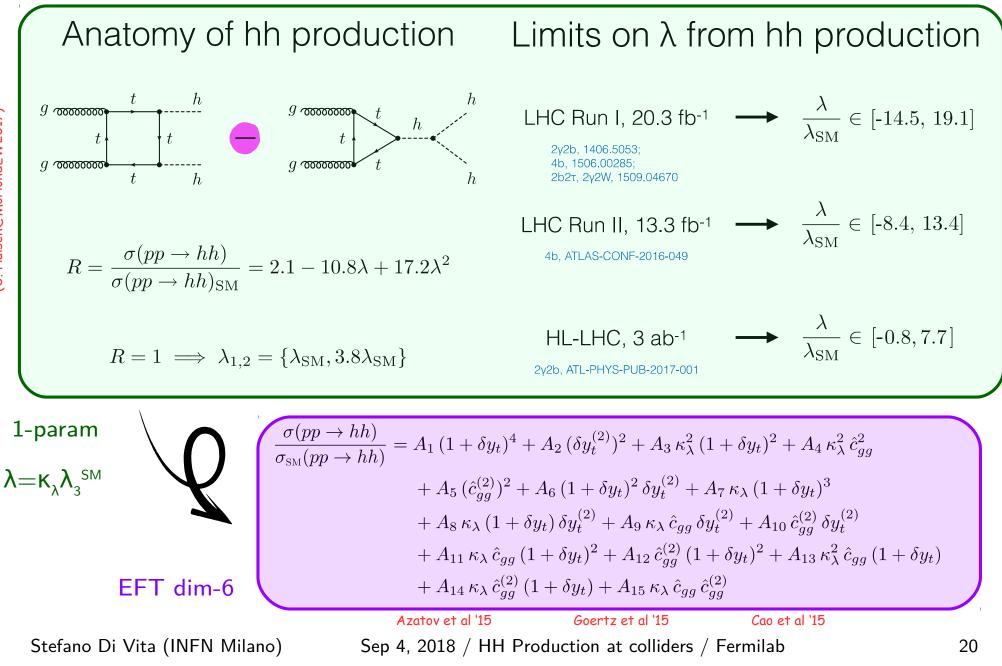
Stefano Di Vita (INFN Milano)

 $= \begin{cases} (H^{\dagger}H)^2 \implies \text{tuning of quartic } \Delta \sim \frac{\theta^2 g_*^2}{\lambda_3^{\text{SM}}} \\ \partial_{\mu}(H^{\dagger}H)\partial^{\mu}(H^{\dagger}H) \implies \delta c_z \sim \theta^2 g_*^2 \frac{v^2}{m_*^2} = \theta \varepsilon \end{cases}$ 


$$(H^{\dagger}H)^3 \quad \Rightarrow \delta \kappa_{\lambda} \sim \theta^3 g_*^4 \frac{1}{\lambda_3^{SM}} \frac{v^2}{m_*^2} = \varepsilon \Delta$$

DV, Grojean, Panico, Riembau, Vantalon [1704.01953]

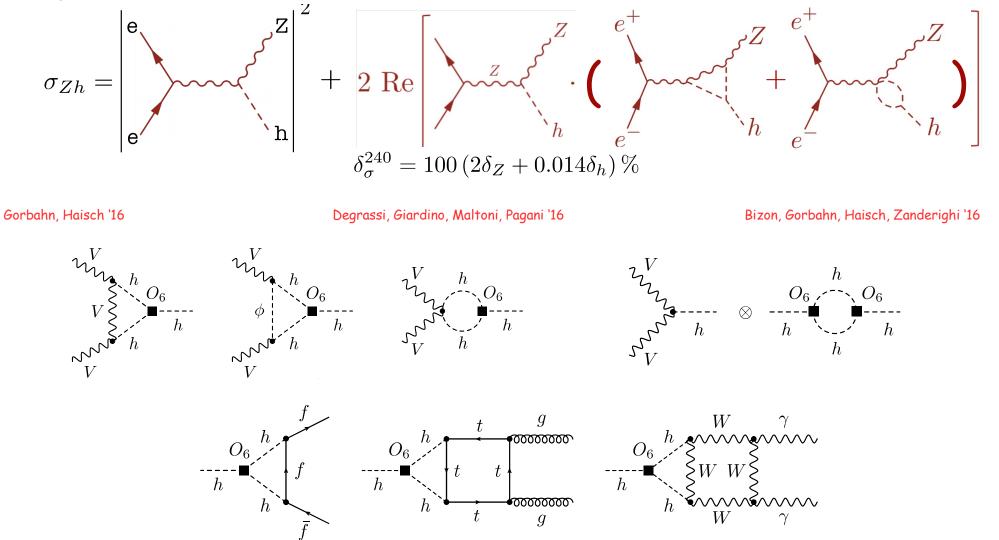



- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders

## **Obviously: double-Higgs production**



Stefano Di Vita (INFN Milano)


# Double-Higgs deformation(s) [ggF]



## Self-coupling & single-Higgs @NLO

Idea: trilinear coupling affects also single-Higgs rates, but **@NLO. Still, if**  $\lambda_3$  is large ...

McCullough '13



Stefano Di Vita (INFN Milano)

## Single-Higgs at the HL-LHC

End of LHC Run 3  $\rightarrow$  300 fb<sup>-1</sup> @ 14 TeV

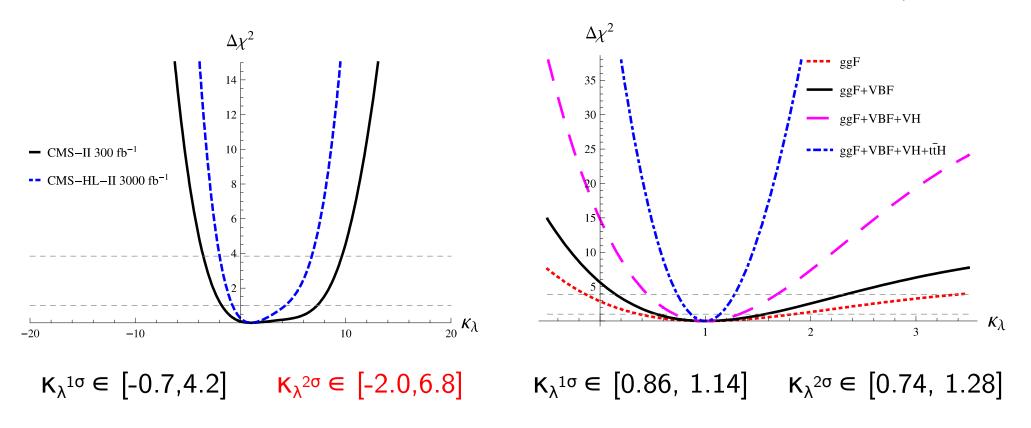
• End of HL-LHC  $\rightarrow$  3000 fb<sup>-1</sup> @ 14 TeV



| Process                       |                  | Combination | Theory | Experimental |
|-------------------------------|------------------|-------------|--------|--------------|
| $H 	o \gamma \gamma$          | ggF              | 0.07        | 0.05   | 0.05         |
|                               | VBF              | 0.22        | 0.16   | 0.15         |
|                               | $t\overline{t}H$ | 0.17        | 0.12   | 0.12         |
|                               | WH               | 0.19        | 0.08   | 0.17         |
|                               | ZH               | 0.28        | 0.07   | 0.27         |
| $H \rightarrow ZZ$            | ggF              | 0.06        | 0.05   | 0.04         |
|                               | VBF              | 0.17        | 0.10   | 0.14         |
|                               | $t\overline{t}H$ | 0.20        | 0.12   | 0.16         |
|                               | WH               | 0.16        | 0.06   | 0.15         |
|                               | ZH               | 0.21        | 0.08   | 0.20         |
| $H \to WW$                    | ggF              | 0.07        | 0.05   | 0.05         |
|                               | VBF              | 0.15        | 0.12   | 0.09         |
| $H \to Z\gamma$               | incl.            | 0.30        | 0.13   | 0.27         |
| $H \rightarrow b\overline{b}$ | WH               | 0.37        | 0.09   | 0.36         |
|                               | ZH               | 0.14        | 0.05   | 0.13         |
| $H \to \tau^+ \tau^-$         | VBF              | 0.19        | 0.12   | 0.15         |

- Good sensitivity on 16 channels, O(5-10-20)%
- Estimated relative uncertainties on signal strengths  $\mu$ , with pile-up 140 events/bunch crossing
- Large luminosity allows for good statistics in bins of differential measurements  $\rightarrow$  exploit!

ATL-PHYS-PUB-2014-016 + ATL-PHYS-PUB-2016-008 + ggF N<sup>3</sup>LO uncertainty+ VH (H→ZZ) split in WH,ZH


Stefano Di Vita (INFN Milano)

## Only an anomalous $\lambda_3 = \kappa_\lambda \lambda_{SM}$

Use only indirect constraint from single-Higgs [first sensitivity study by Degrassi et al '16]

Optimistic CMS projections for HL-LHC

Exercise: assume 1% combined th/exp uncert



a bit worse than ATLAS HL-LHC HH projection (less optimistic assumptions)  $K_{\lambda}^{2\sigma} \in [-0.8, 7.7]$ 

Stefano Di Vita (INFN Milano)

#### A global view on the Higgs self-coupling

Grojean, Panico, Riembau, Vantalon, DV [1704.01953]

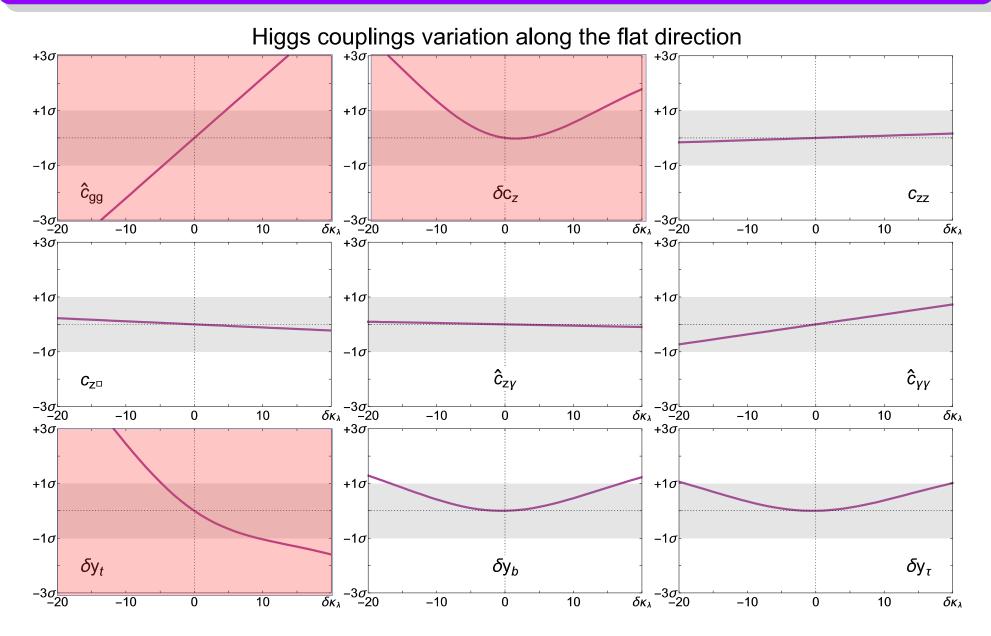
HL-LHC prospects on  $\delta\kappa_\lambda$  with ATLAS projections (~ CMS "Scenario 1") 14TeV, 3/ab, pile-up  $\mu{=}140$ 

ATL-PHYS-PUB-2014-016 + ATL-PHYS-PUB-2016-008 + ggF N<sup>3</sup>LO uncertainty HXSWG YR4 + VH (H→ZZ) split in WH,ZH

Keep only interference SM-BSM Allow for NLO corrections due to  $\kappa_{\lambda}$ With my assumptions, **10 parameters** Perform  $\chi^2$  fit with SM signal ( $\mu_i^{f}=1$ )

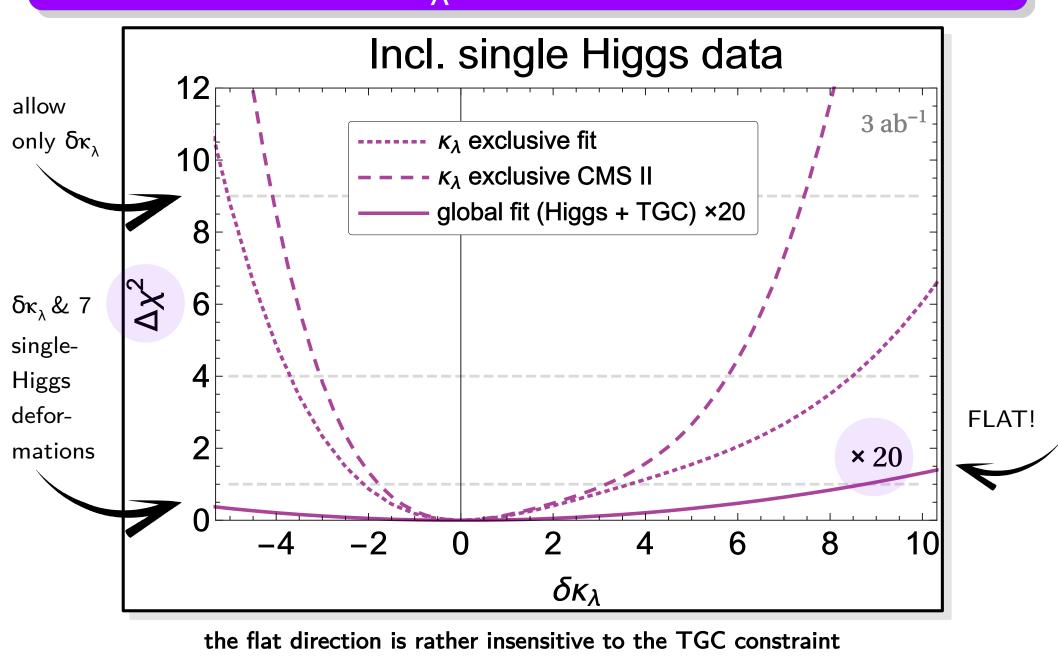
Signal strength measurements  $\mu_i^f = \sigma_i \times BR^f / (\sigma_i \times BR^f)_{SM} \sim 1 + \delta \sigma_i + \delta BR^f$ Production channels: ggF,WH,ZH,VBF,ttH Decay modes:  $\gamma\gamma$ ,WW,ZZ,bb,TT

A fit of the "usual" inclusive rates is insensitive to simultaneous global shift  $\sigma_i \rightarrow \sigma_i + \Delta \ \& \ BR^f \rightarrow BR^f - \Delta$ 


In principle have  $5 \times 5 = 25$  observables, in fact only 9 directions are independent

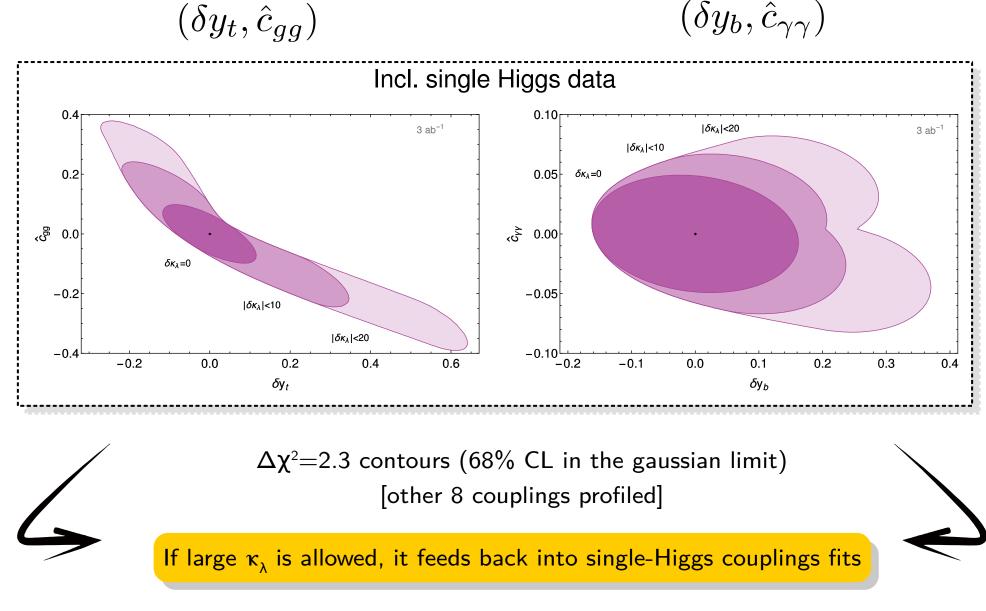
⇒ we expect 1 exact flat direction in a 10 parameters fit

Sorry: including Triple Gauge Couplings constraints,  $BR(h \rightarrow Z\gamma)$ ,  $BR(h \rightarrow \mu\mu)$  does not really help :( Also: Higgs width (on-shell vs off-shell) has no impact (moreover EFT interpretation problematic)


Stefano Di Vita (INFN Milano) Sep 4, 2018 / HH Production at colliders / Fermilab

## Exact flat direction in the global fit

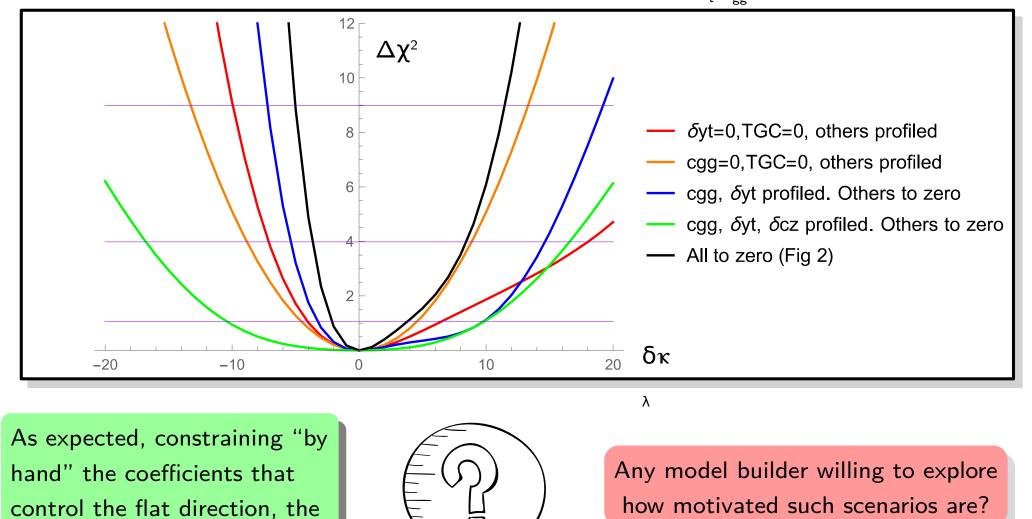



Stefano Di Vita (INFN Milano)

### Bound on $\delta \kappa_{\lambda}$ from inclusive rates



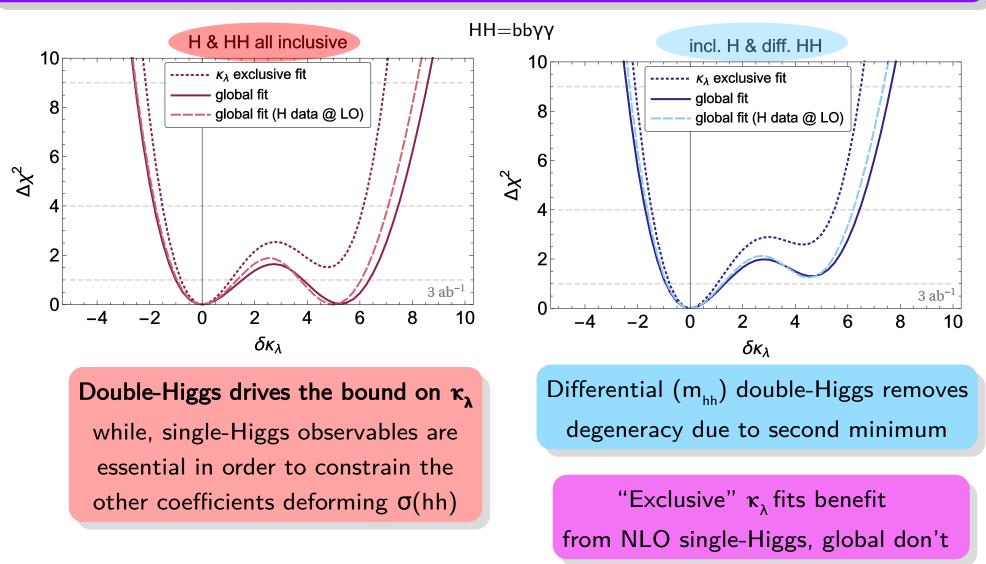
Stefano Di Vita (INFN Milano)


## Single-Higgs couplings fit $w/\kappa_{\lambda}$ @NLO



Stefano Di Vita (INFN Milano)

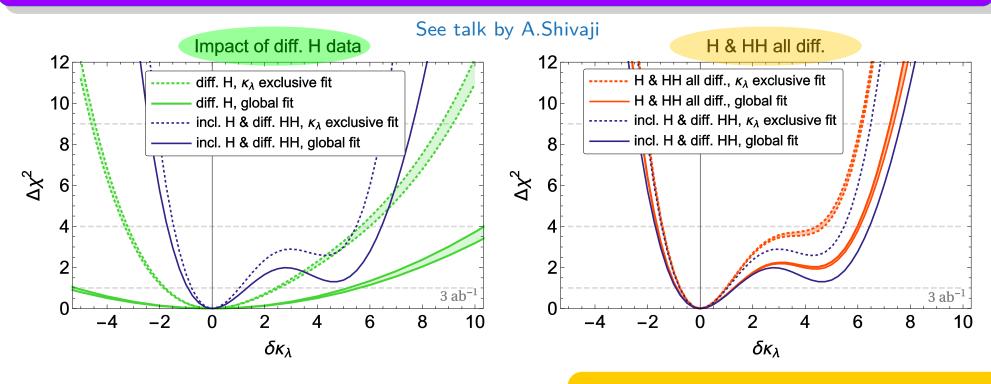
### Constrained "intermediate" scenarios


A game: let's pretend we have scenarios with some of  $(\delta y_t, c_{gg}, \delta cz)$  switched off



Stefano Di Vita (INFN Milano)

bound on  $\kappa_{\lambda}$  shrinks


## Compare & combine w/double-Higgs



Warning: here the assumption is that of linearly realized EW symmetry. Non-linear EFT $\Rightarrow$ {1,h,h<sup>2</sup>}XY couplings unrelated $\Rightarrow$ more parameters, global fit w/ EWPO!

Stefano Di Vita (INFN Milano)

### Impact of differential VH and ttH



Inclusion of differential data  $(d\sigma/dm_{inv})$  for single-Higgs observables seems promising, but more detailed estimates of the experimental systematics are required, as well as more refined analyses.


See Maltoni, Pagani, Shivaji, Zhao [1709.08649] for the impact of δκ, on single-Higgs differential distributions and for a simplified κ-framework analysis \* see backup a couple of their plots

Combining differential data from single- and double-Higgs, the minimum at large  $\delta K_{\lambda}$  is further lifted. Synergy!

Bound from single-H not competitive but has totally different systematics ⇒ complementary to HH

Stefano Di Vita (INFN Milano)

#### Some simple robustness checks





- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders

See also talks by A.Canepa and P.Roloff

Stefano Di Vita (INFN Milano)

#### Higgs self-coupling @HE-LHC



14 TeV, 3/ab Grojean, Panico, Riembau, Vantalon, DV [1704.01953] σ(hh,ggF)~35fb

- Stay tuned for the HL/HE-LHC YR See talk by S.Gori
- Inclusive single-Higgs rates can't constrain  $\delta\kappa_{_\lambda}(w/$  NLO effects) in generic BSM scenarios
- Double-Higgs production drives the bound (single-Higgs LO crucial for other deformations)
- Differential measurements of both h and hh help eliminate the extra minimum  $\delta\kappa_\lambda^{\sim}5$
- HL-LHC is **the machine** for accurate differential Higgs measurements  $\rightarrow$  explore prospects!



33 TeV, 10/ab σ(hh,ggF)~194fb

- Both high E and high lumi
- Probe BSM in distrib's tails
- Exploit non-SM tensor structures to disentangle flat directions in BSM fits
- Also VBF channel See e.g. Contino et al '10, '12
- Work to be done!

- HE here is just naive extrapolation! (FCC=100TeV)
- Old machine parameters, just for illustrative purposes

| $\delta\kappa_{\lambda}$ bound / scenario | 68%                             | 95%                             |  |
|-------------------------------------------|---------------------------------|---------------------------------|--|
| HL: h incl, hh incl                       | [-1, 1.5] U [3.9, 6.4]          | [-1.8, 7.5]                     |  |
| HL: h incl, hh diff                       | [-1.1, 1.3]                     | [-1.7, 6.5]                     |  |
| HE: h incl, hh incl                       | <b>[-0.3, 0.3]</b> ∪ [5.0, 6.0] | <b>[-0.5, 0.7]</b> ∪ [4.5, 6.7] |  |
| HL + HE                                   | [-0.3, 0.3]                     | <b>[-0.5, 0.6]</b> ∪ [4.8, 6.0] |  |
| FCC 100 TeV 30/ab<br>h incl, hh diff      | [-0.03, 0.03]                   | [-0.06, 0.06]                   |  |

- Uncertanties on single-H  $\mu$  's: naively extrapolated from HL-LHC

- Double-H EFT: interpolation between HL-LHC and FCC of Azatov et al '15

- NLO δκ, effect on single-H: courtesy of D.Pagani

Stefano Di Vita (INFN Milano)

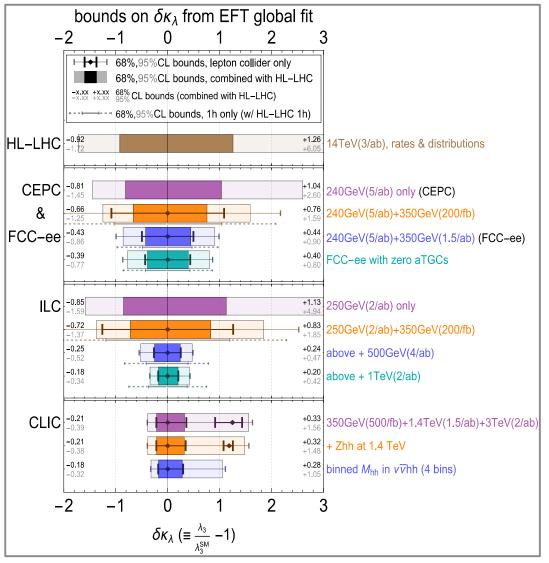
### The lepton collider option

#### Hadron

- High-energy  $\rightarrow$  discovery?
- No direct handle on partonic c.o.m. energy → pdf's
- Large QCD backgrounds
- Sensitivity to couplings to quarks

#### Lepton

- Lower energies but clean environment  $\rightarrow$  Higgs factories
- Lower energies achievable
- Beam polarization (extra handle)
- Sensitivity to EW couplings


#### Circular

- Energy limited by synchrotron radiation
- Higher luminosity
- Several interaction points
- Precise determination of beam energy

#### Linear

- Allows for staged development (gradual energy increase)
- Easier to control beam polarization
- Bremsstrahlung

### Comparison of future colliders reach

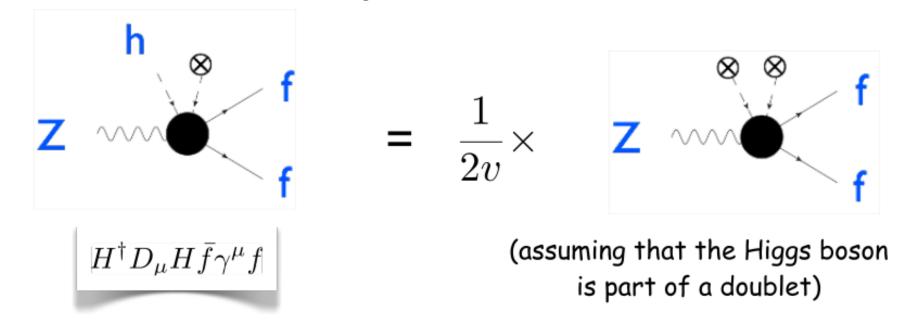


Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, DV [1711.03978]

#### • HL/HE-LHC

- <sup>-</sup> HL will be able to put only O(1) bound, driven by **hh production**
- $^-$  HE with cross-section and lumi increase  $\rightarrow$  factor 10 better
- Low energy e+e-
  - only a 240GeV circular collider is not enough: need to combine with HL-LHC or run at other energy
  - 40% precision from indirect bound (h), provided runs at both 240/250 GeV and 350 GeV are available (~few ab<sup>-1</sup> lumi)
- High-energy e+e-
  - $^-$  direct bound (hh) dominates
  - ILC maximizes sensititvity (Zh, WBF)
  - ^ CLIC loses access to Zh  $\rightarrow$  residual minimum for  $\delta\kappa_{\lambda}\!\!\sim\!\!1$

#### Items for discussion at the LHC

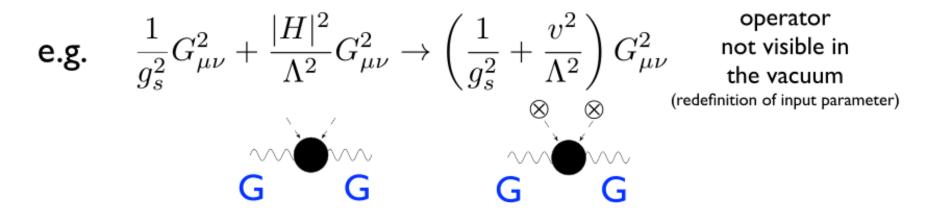

- Keep up with the hard work in measuring inclusive & diff rates
- Use simplified scenarios (e.g.  $\kappa_{\lambda}$  or  $\kappa_{\lambda}$ - $\kappa_{t}$ ) just as a training ground
- Bounds on  $\kappa_{\lambda}$  from simplified fits have a physical interpretation only in very non-generic scenarios
  - $\Rightarrow$  they are **not** model-independent statements on the Higgs self-coupling!
- Bounds on  $\kappa_{\lambda}$  from single-H can't compete with HH
  - ⇒ but somehow complementary
- Come up with optimized observables (e.g. best differential distrib's)
- Include new channels to resolve flat directions (e.g. h+j,  $h+\gamma$ )

- More/updated HL-LHC projections (incl. and diff) very welcome!
- Is it reasonable to neglect the other operators in these extrapolations?
- Are there BSM scenarios that can be tested today? ⇒ Model building effort



# BSM deformations and Higgs physics

Potentially new BSM-effects in h physics could have been already tested in the vacuum



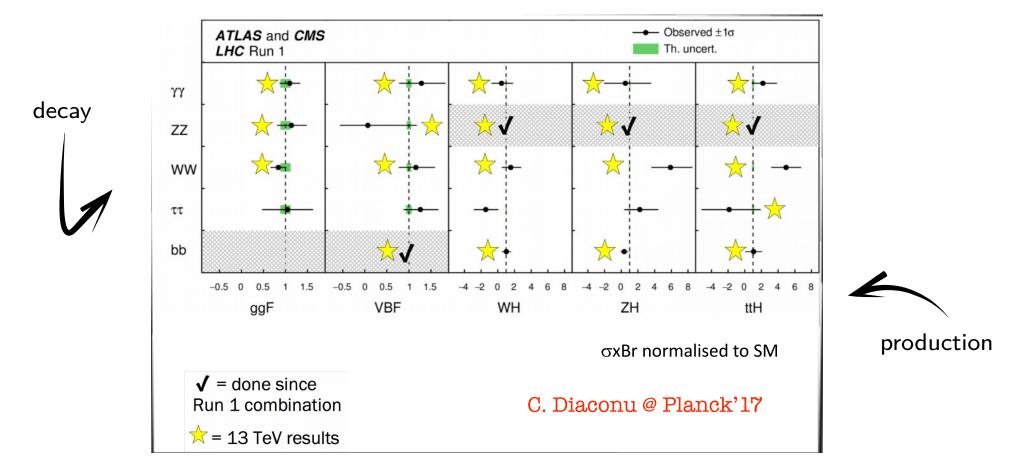

## Modifications in $h \rightarrow Zff$ related to $Z \rightarrow ff$ already constrained at LEP $\checkmark$

(courtesy of A. Pomarol@HiggsHunting2014)

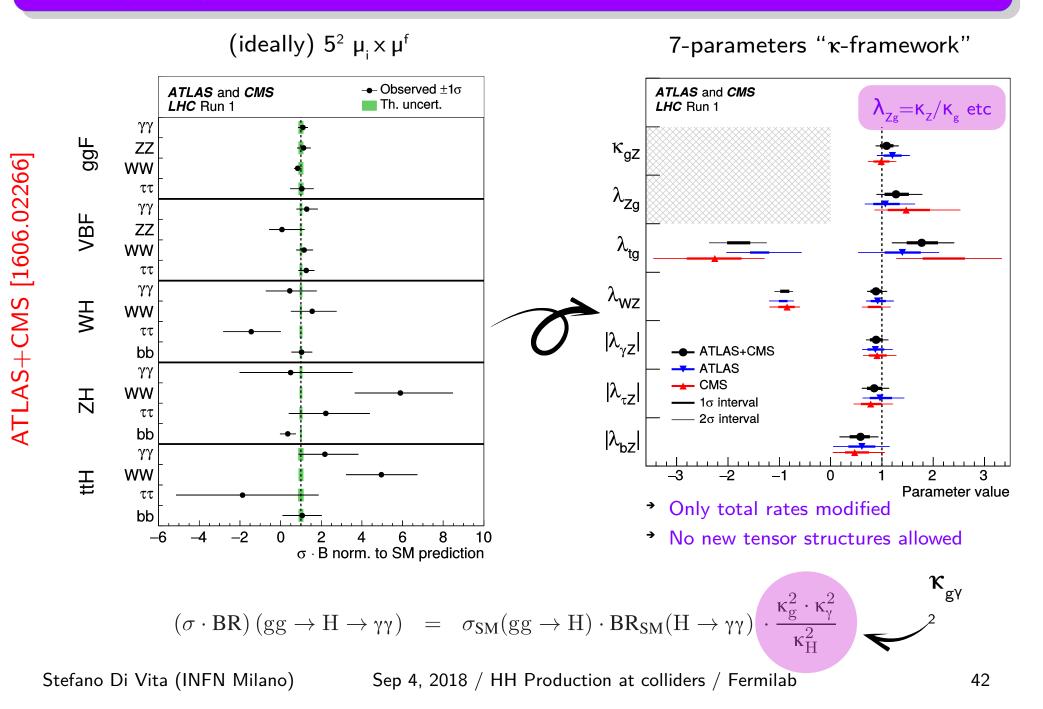
# **BSM deformations and Higgs physics**

There are others deformations away from the SM that are harmless in the vacuum and need a Higgs field to be probed




But can affect h physics:




## Single-Higgs couplings at the LHC today

signal strengths  $\mu_i \times \mu^f = inclusive$  rates ( $\sigma_i \times BR_f$ ) relative to SM prediction





## A (too) simple interpretation: $\kappa$ -framework



# Self-coupling & single-Higgs @NLO

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} \left( 1 + \kappa_{\lambda} C_1 \right)$$

#### $d\Phi$ inclusive or differential

LO can include

QCD corrections

Courtesy of D. Pagani @ Turin '17

## Self-coupling & single-Higgs @NLO

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} \left( 1 + \kappa_\lambda C_1 \right)$$

$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \, \delta Z_H}$$

$$\stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \sim \kappa_{\lambda}^{2}$$

$$\kappa_{\lambda}^2 \, \delta Z_H \lesssim 1$$
  $|\kappa_{\lambda}| \lesssim 25$ 

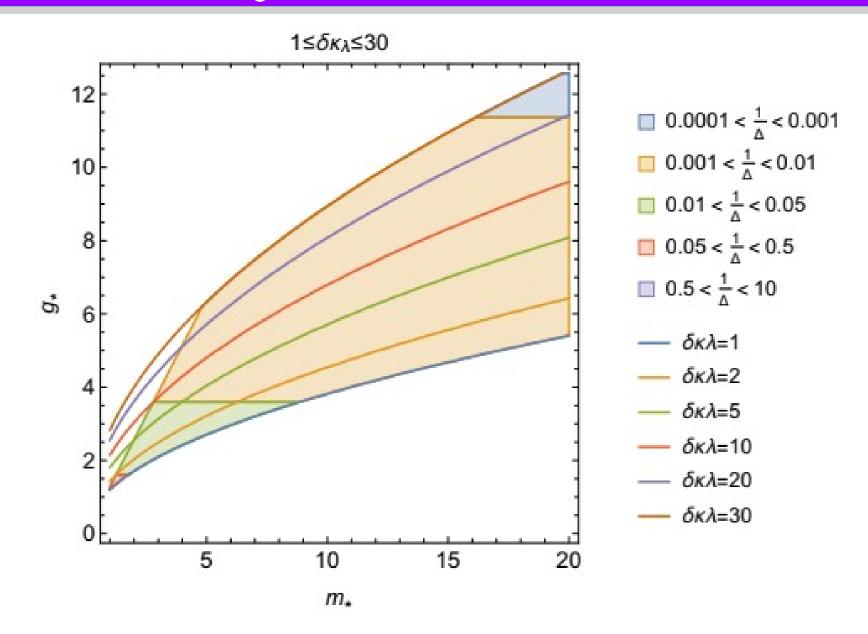
$$\delta Z_H = -\frac{9}{16} \, \frac{2(\lambda_3^{\rm SM})^2}{m_H^2 \, \pi^2} \left(\frac{2\pi}{3\sqrt{3}} - 1\right)$$

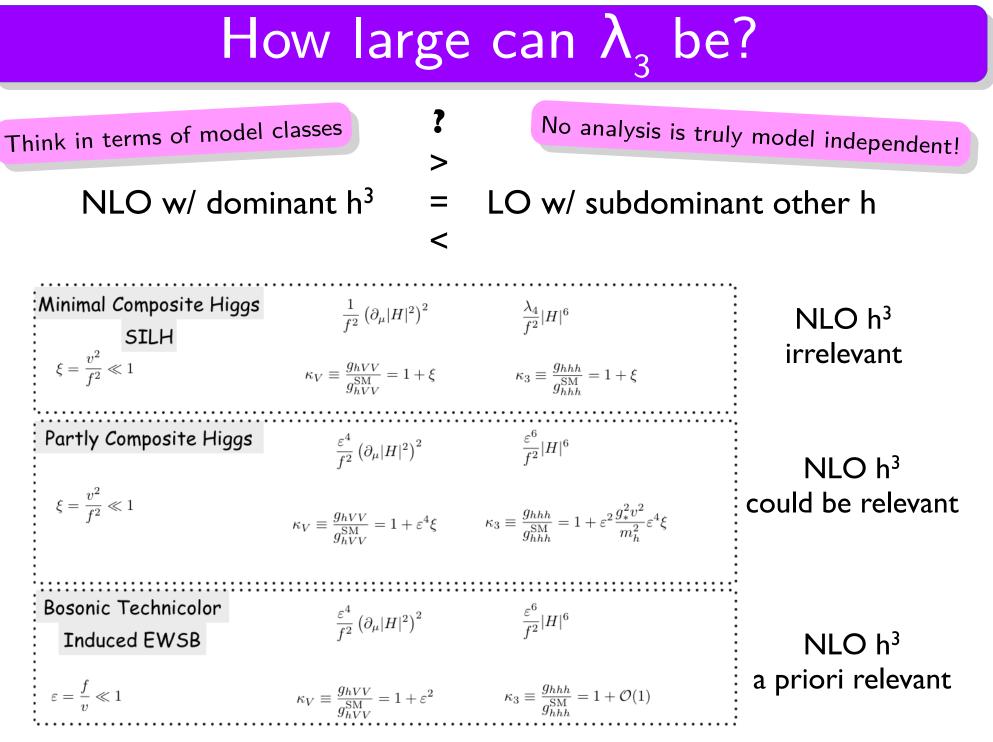
The wave-function normalization receives corrections that depend quadratically on  $\lambda_3$ .

For large  $\kappa_{\lambda}$ , the result cannot be linearized and must be resummed.

### For a sensible resummation

20

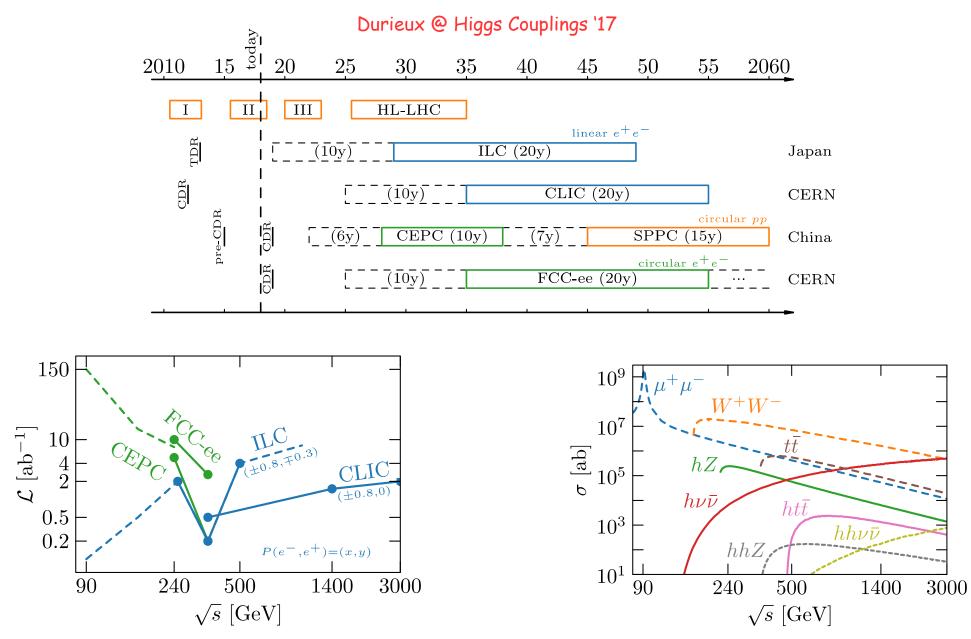

Courtesy of D. Pagani @ Turin '17


# Self-coupling & single-Higgs @NLO

Courtesy of D. Pagani @ Turin '17

Stefano Di Vita (INFN Milano)

# Large $\lambda_3$ in tuned Higgs Portal






Stefano Di Vita (INFN Milano)

Courtesy of C. Grojean @ Portorož "17

## A future history of lepton colliders



Stefano Di Vita (INFN Milano)

## Will further constraints help?

- Triple Gauge Couplings
  - $^-$  currently WWZ and WWY tested at 5%  $\rightarrow$  expect 1%
  - can be converted in constraints on 2 linear combinations of

 $\hat{c}_{\gamma\gamma}, \hat{c}_{z\gamma}, c_{zz}, c_{z\Box}$ 

- BR( $h \rightarrow Z\gamma$ )
  - <sup>–</sup> Will be measured w/ 30% accuracy
  - Can be used to constrain  $c_{_{z\gamma}} \rightarrow$  not relevant for  $\kappa_{\lambda !}$
- BR( $h \rightarrow \mu \mu$ )
  - <sup>–</sup> Either one extra parameter  $\delta y_{\mu}$
  - <sup>–</sup> Or (w/ flavor universality) just helps to better bound  $\delta y_e$



## Gauge invariant operators in the Higgs basis

$$\begin{split} O_{\delta\lambda_{3}} &= -\frac{1}{v^{2}}(H^{\dagger}H)^{3}, \\ O_{c_{gg}} &= \frac{g_{s}^{2}}{4v^{2}}H^{\dagger}H \, G_{\mu\nu}^{a}G_{\mu\nu}^{a} \\ O_{\delta c_{z}} &= -\frac{1}{v^{2}} \left[ \partial_{\mu}(H^{\dagger}H) \right]^{2} + \frac{3\lambda}{v^{2}}(H^{\dagger}H)^{3} + \left( \sum_{f} \frac{\sqrt{2}m_{f_{i}}}{v^{3}}H^{\dagger}H\bar{f}_{L,i}Hf_{R,i} + \text{h.c.} \right), \\ O_{c_{z\Omega}} &= \frac{ig^{3}}{v^{2}(g^{2} - g'^{2})} \left( H^{\dagger}\sigma^{i}\overrightarrow{D_{\mu}}H \right) D_{\nu}W_{\mu\nu}^{i} - \frac{ig^{2}g'}{v^{2}(g^{2} - g'^{2})} \left( H^{\dagger}\overrightarrow{D_{\mu}}H \right) \partial_{\nu}B_{\mu\nu}, \\ O_{c_{zz}} &= \frac{ig(g^{2} + g'^{2})}{2v^{2}(g^{2} - g'^{2})} \left( H^{\dagger}\sigma^{i}\overrightarrow{D_{\mu}}H \right) D_{\nu}W_{\mu\nu}^{i} - \frac{ig'(g^{2} + g'^{2})}{2v^{2}(g^{2} - g'^{2})} \left( H^{\dagger}\overrightarrow{D_{\mu}}H \right) \partial_{\nu}B_{\mu\nu} \\ &- \frac{ig}{v^{2}} \left( D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H \right) W_{\mu\nu}^{i} - \frac{ig'}{v^{2}} \left( D_{\mu}H^{\dagger}D_{\nu}H \right) B_{\mu\nu}, \\ O_{c_{z\gamma}} &= -\frac{2igg'^{2}}{v^{2}(g^{2} + g'^{2})} \left( D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H \right) W_{\mu\nu}^{i} + \frac{2ig'g^{2}}{v^{2}(g^{2} + g'^{2})} \left( D_{\mu}H^{\dagger}D_{\nu}H \right) B_{\mu\nu}, \\ O_{c_{\gamma\gamma}} &= -\frac{igg'^{4}}{2v^{2}(g^{4} - g'^{4})} \left( H^{\dagger}\sigma^{i}\overrightarrow{D_{\mu}}H \right) D_{\nu}W_{\mu\nu}^{i} + \frac{ig'^{5}}{2v^{2}(g^{4} - g'^{4})} \left( H^{\dagger}\overrightarrow{D_{\mu}}H \right) \partial_{\nu}B_{\mu\nu} \\ &- \frac{igg'^{4}}{v^{2}(g^{2} + g'^{2})^{2}} \left( D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H \right) W_{\mu\nu}^{i} + \frac{ig'^{3}(2g^{2} + g'^{2})}{(g^{2} + g'^{2})^{2}v^{2}} \left( D_{\mu}H^{\dagger}D_{\nu}H \right) B_{\mu\nu} + \frac{g'^{2}}{4v^{2}}H^{\dagger}H B_{\mu\nu}B_{\mu\nu}, \\ \left[ O_{\delta y_{f}} \right]_{ij} &= -\frac{\sqrt{2m_{f_{i}}m_{f_{j}}}}{v^{3}} H^{\dagger}H\bar{f}_{L,i}Hf_{R,j} + \text{h.c.}, \end{split}$$

Stefano Di Vita (INFN Milano)

## Estimated precision @ circular colliders

|               |                         | CEPC                                      |                         |                                         |                      | FCC-ee                           |                         |                                         |                      |  |
|---------------|-------------------------|-------------------------------------------|-------------------------|-----------------------------------------|----------------------|----------------------------------|-------------------------|-----------------------------------------|----------------------|--|
|               |                         | $[240 \mathrm{GeV},  5 \mathrm{ab}^{-1}]$ |                         | $[350\mathrm{GeV},200\mathrm{fb}^{-1}]$ |                      | $[240{\rm GeV},10{\rm ab}^{-1}]$ |                         | $[350\mathrm{GeV},2.6\mathrm{ab}^{-1}]$ |                      |  |
|               | production              | Zh                                        | $ u \overline{ u} h$    | Zh                                      | $ u \overline{ u} h$ | Zh                               | $ u \overline{ u} h$    | Zh                                      | $ u \overline{ u} h$ |  |
| O(1%) on      | σ                       | 0.50%                                     |                         | 2.4%                                    |                      | 0.40%                            |                         | 0.67%                                   |                      |  |
|               |                         | $\sigma \times BR$                        |                         |                                         | $\sigma 	imes BR$    |                                  |                         |                                         |                      |  |
| most channels | $h \to b\overline{b}$   | 0.21%*                                    | $0.39\%^{\diamondsuit}$ | 2.0%                                    | 2.6%                 | 0.20%                            | $0.28\%^{\diamondsuit}$ | 0.54%                                   | 0.71%                |  |
|               | $h \to c\overline{c}$   | 2.5%                                      |                         | 15%                                     | 26%                  | 1.2%                             | —                       | 4.1%                                    | 7.1%                 |  |
|               | $h \rightarrow gg$      | 1.2%                                      |                         | 11%                                     | 17%                  | 1.4%                             |                         | 3.1%                                    | 4.7%                 |  |
|               | $h \to \tau \tau$       | 1.0%                                      |                         | 5.3%                                    | 37%                  | 0.7%                             |                         | 1.5%                                    | 10%                  |  |
|               | $h \to WW^*$            | 1.0%                                      |                         | 10%                                     | 9.8%                 | 0.9%                             |                         | 2.8%                                    | 2.7%                 |  |
|               | $h \to ZZ^*$            | 4.3%                                      |                         | 33%                                     | 33%                  | 3.1%                             | —                       | 9.2%                                    | 9.3%                 |  |
|               | $h \to \gamma \gamma$   | 9.0%                                      |                         | 51%                                     | 77%                  | 3.0%                             | —                       | 14%                                     | 21%                  |  |
|               | $h \rightarrow \mu \mu$ | 12%                                       |                         | 115%                                    | 275%                 | 13%                              | —                       | 32%                                     | 76%                  |  |
|               | $h \rightarrow Z\gamma$ | 25%                                       |                         | 144%                                    |                      | 18%                              | —                       | 40%                                     |                      |  |

**Table 2.** The estimated precision of CEPC and FCC-ee Higgs measurements. We gather the available estimations from refs. [1, 2, 86], while the missing ones (highlighted in green) are obtained from scaling with luminosity. See appendix B for more details. For  $\sigma(e^+e^- \to \nu \bar{\nu}h)$ , the precisions marked with a diamond  $\diamond$  are normalized to the cross section of the inclusive channel which includes both the WW fusion and  $e^+e^- \to hZ, Z \to \nu \bar{\nu}$ , while the unmarked precisions are normalized to the WW fusion process only. For the CEPC, the precision of the  $\sigma(hZ) \times \text{BR}(h \to b\bar{b})$  measurement (marked by a star  $\bigstar$ ) reduces to 0.24% if one excludes the contribution from  $e^+e^- \to hZ, Z \to \nu \bar{\nu}h, h \to b\bar{b}$  to avoid double counting with  $e^+e^- \to \nu \bar{\nu}h, h \to b\bar{b}$ . The corresponding information is not available for the FCC-ee.

#### Durieux, Grojean, Gu '17

Stefano Di Vita (INFN Milano)

## Estimated precision @ linear colliders: ILC

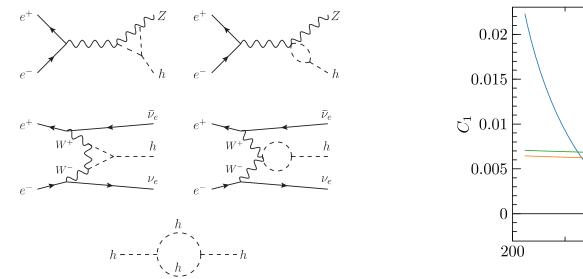
| ILC                          |                                 |                      |                                   |                      |                                          |                      |                  |                                                                                                       |                  |                      |                       |
|------------------------------|---------------------------------|----------------------|-----------------------------------|----------------------|------------------------------------------|----------------------|------------------|-------------------------------------------------------------------------------------------------------|------------------|----------------------|-----------------------|
|                              | $[250{\rm GeV},2{\rm ab}^{-1}]$ |                      | $[350{\rm GeV},200{\rm fb}^{-1}]$ |                      | $[500 \mathrm{GeV}, 4 \mathrm{ab}^{-1}]$ |                      |                  | $\left[1 \mathrm{TeV},  1 \mathrm{ab}^{-1}\right] \left[1 \mathrm{TeV},  2.5 \mathrm{ab}^{-1}\right]$ |                  |                      | $2.5  {\rm ab}^{-1}]$ |
| production                   | Zh                              | $ u \overline{ u} h$ | Zh                                | $ u \overline{ u} h$ | Zh                                       | $ u \overline{ u} h$ | $t\overline{t}h$ | $\nu \overline{\nu} h$                                                                                | $t\overline{t}h$ | $ u \overline{ u} h$ | $t\overline{t}h$      |
| σ                            | 0.71%                           |                      | 2.1%                              |                      | 1.1%                                     |                      |                  |                                                                                                       |                  |                      |                       |
|                              | $\sigma 	imes BR$               |                      |                                   |                      |                                          |                      |                  |                                                                                                       |                  |                      |                       |
| $h \to b\overline{b}$        | 0.42%                           | 3.7%                 | 1.7%                              | 1.7%                 | 0.64%                                    | 0.25%                | 9.9%             | 0.5%                                                                                                  | 6.0%             | 0.3%                 | 3.8%                  |
| $h \to c \overline{c}$       | 2.9%                            |                      | 13%                               | 17%                  | 4.6%                                     | 2.2%                 |                  | 3.1%                                                                                                  |                  | 2.0%                 |                       |
| $h \rightarrow gg$           | 2.5%                            |                      | 9.4%                              | 11%                  | 3.9%                                     | 1.4%                 |                  | 2.3%                                                                                                  |                  | 1.4%                 |                       |
| $h \to \tau \tau$            | 1.1%                            |                      | 4.5%                              | 24%                  | 1.9%                                     | 3.2%                 |                  | 1.6%                                                                                                  |                  | 1.0%                 |                       |
| $h \to WW^*$                 | 2.3%                            |                      | 8.7%                              | 6.4%                 | 3.3%                                     | 0.85%                |                  | 3.1%                                                                                                  |                  | 2.0%                 |                       |
| $h \to ZZ^*$                 | 6.7%                            |                      | 28%                               | 22%                  | 8.8%                                     | 2.9%                 |                  | 4.1%                                                                                                  |                  | 2.6%                 |                       |
| $h  ightarrow \gamma \gamma$ | 12%                             |                      | 44%                               | 50%                  | 12%                                      | 6.7%                 |                  | 8.5%                                                                                                  |                  | 5.4%                 |                       |
| $h  ightarrow \mu \mu$       | 25%                             |                      | 98%                               | 180%                 | 31%                                      | 25%                  |                  | 31%                                                                                                   |                  | 20%                  |                       |
| $h \to Z\gamma$              | 34%                             |                      | 145%                              |                      | 49%                                      |                      |                  | _                                                                                                     |                  |                      |                       |

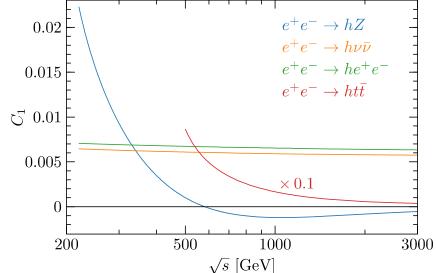
**Table 3.** The estimated precision of ILC Higgs measurements. For the 250 GeV, 350 GeV and 500 GeV runs, all numbers are scaled from ref. [58] (table 13), except for  $\sigma(hZ) \times \text{BR}(h \to Z\gamma)$  which is scaled from the CEPC estimation. A beam polarization of  $P(e^-, e^+) = (-0.8, +0.3)$  is assumed. The 1 TeV run is only included in figure 17 of appendix C, while the estimations are taken from ref. [59] which assumes a polarization of  $P(e^-, e^+) = (-0.8, +0.2)$ .

Durieux, Grojean, Gu '17

Stefano Di Vita (INFN Milano)

## Estimated precision @ linear colliders: CLIC


| CLIC                   |                                             |                      |                      |                          |                                         |  |  |  |  |
|------------------------|---------------------------------------------|----------------------|----------------------|--------------------------|-----------------------------------------|--|--|--|--|
|                        | $[350 \mathrm{GeV},  500 \mathrm{fb}^{-1}]$ |                      | $[1.4\mathrm{TeV}]$  | $V, 1.5  {\rm ab}^{-1}]$ | $[3 \mathrm{TeV},  2 \mathrm{ab}^{-1}]$ |  |  |  |  |
| production             | Zh                                          | $ u \overline{ u} h$ | $ u \overline{ u} h$ | $t\overline{t}h$         | $ u \overline{ u} h$                    |  |  |  |  |
| σ                      | 1.6%                                        |                      |                      |                          |                                         |  |  |  |  |
|                        | $\sigma \times BR$                          |                      |                      |                          |                                         |  |  |  |  |
| $h \to b\overline{b}$  | 0.84%                                       | 1.9%                 | 0.4%                 | 8.4%                     | 0.3%                                    |  |  |  |  |
| $h \to c \bar{c}$      | 10.3%                                       | 14.3%                | 6.1%                 |                          | 6.9%                                    |  |  |  |  |
| h  ightarrow gg        | 4.5%                                        | 5.7%                 | 5.0%                 |                          | 4.3%                                    |  |  |  |  |
| $h\to\tau\tau$         | 6.2%                                        | —                    | 4.2%                 |                          | 4.4%                                    |  |  |  |  |
| $h \to WW^*$           | 5.1%                                        |                      | 1.0%                 |                          | 0.7%                                    |  |  |  |  |
| $h \to ZZ^*$           |                                             |                      | 5.6%                 |                          | 3.9%                                    |  |  |  |  |
| $h 	o \gamma \gamma$   |                                             |                      | 15%                  |                          | 10%                                     |  |  |  |  |
| $h  ightarrow \mu \mu$ |                                             |                      | 38%                  |                          | 25%                                     |  |  |  |  |
| $h \to Z\gamma$        |                                             |                      | 42%                  |                          | 30%                                     |  |  |  |  |

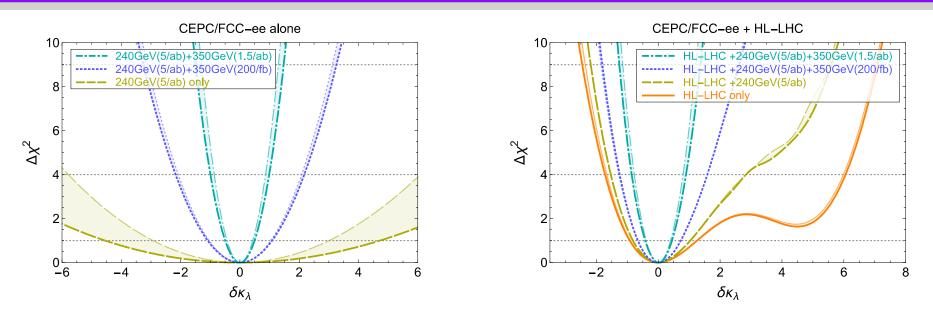

**Table 4.** The estimated precision of CLIC Higgs measurements taken from ref. [60], which assumes unpolarized beams and considers only statistical uncertainties. In addition, we also include the estimations for  $\sigma(hZ) \times BR(h \to b\bar{b})$  at high energies in ref. [35], which are 3.3% (6.8%) at 1.4 TeV (3 TeV). We find the inclusion of the ZZ fusion  $(e^+e^- \to e^+e^-h)$  measurements to have little impact in our analysis.

#### Durieux, Grojean, Gu '17

Stefano Di Vita (INFN Milano)

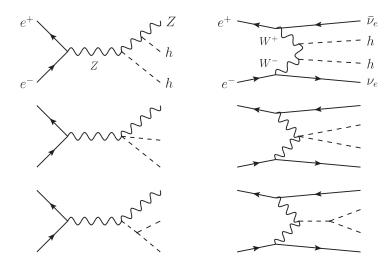
## Low-energy lepton colliders





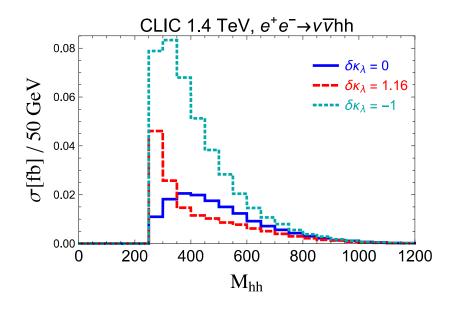

- 2 main production modes
- 4 angular distributions in Zh
- 2 beam polarization runs ( $\pm 80\%$ ,  $\mp 30\%$ )
- 7+2 decay modes ZZ, WW,  $\gamma\gamma$ ,  $Z\gamma$ ,  $\tau\tau$ , bb, gg, (cc,  $\mu\mu$ )
- no flat direction expected

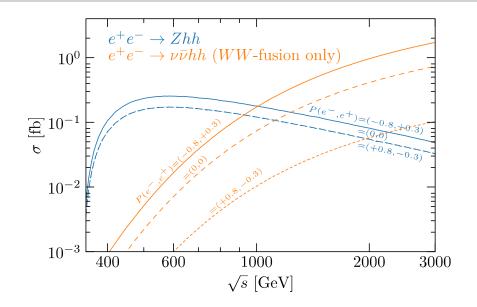
Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, DV [1711.03978]


Stefano Di Vita (INFN Milano)

## Low-energy lepton colliders

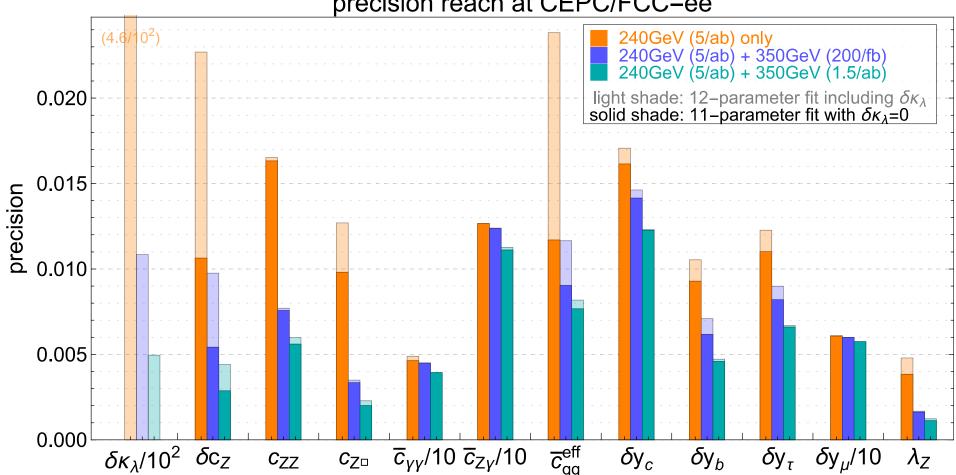



- shaded band reflects different assumptions on TGCs → large impact! global analysis needed to constrain single-Higgs deformations
- low-energy circular collider needs either combination with HL-LHC or 2 energy runs to set meaningful bounds


## High-energy lepton colliders



more sensitive to  $\delta \kappa_{\lambda} > 0$ 

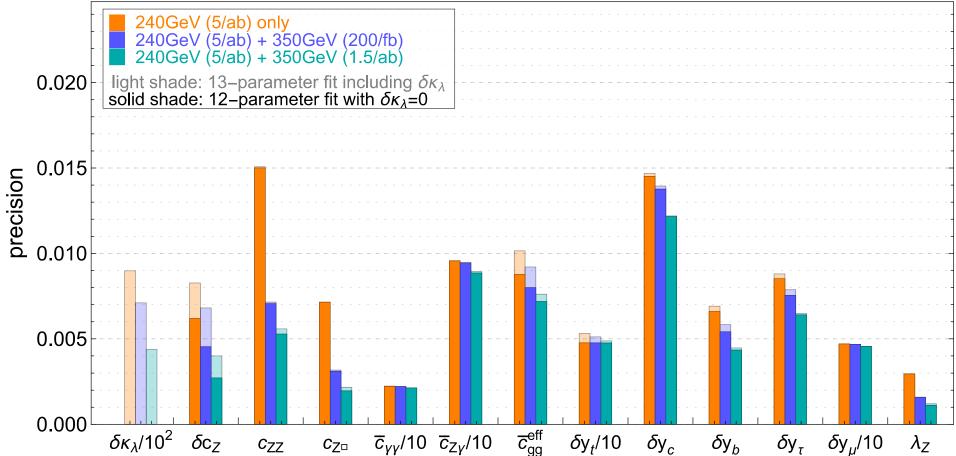

more sensitive to  $\delta \kappa_{3} < 0$ 





- access to double-Higgs production, ZHH / WBF complementary
- differential data in  $m_{\mbox{\tiny hh}}$  add useful info
- exploit impact of polarization at ILC
- dependence on  $\delta \kappa_{\lambda}$  stronger at low energy  $\rightarrow$ ILC runs at 500GeV and 1TeV maximize sensitivity

## Impact on the other couplings




#### precision reach at CEPC/FCC-ee

Stefano Di Vita (INFN Milano)

## Impact on the other couplings

### precision reach at CEPC/FCC-ee (combined with HL-LHC)



Stefano Di Vita (INFN Milano)