Beyond the Standard Model HH production

Ian Lewis University of Kansas

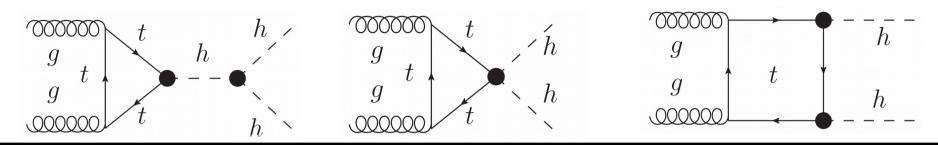
BSM in Double Higgs

• Now that we know mass, completely predictive.

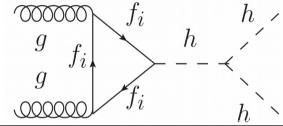
$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 = -\frac{1}{8} m_h^2 v^2 + \frac{1}{2} m_h^2 h^2 + \frac{m_1^2}{2v} h^3 + \frac{m_1^2}{8v^2} h^4$$

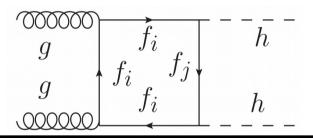
$$-\lambda_{hhh} = m_h^2/2v = 0.13\,v$$

$$- \qquad y_t = m_t/v = 0.70$$

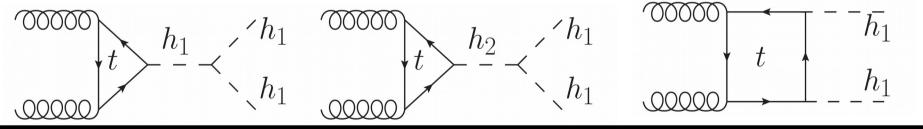

• Precise predictions for the SM:

 $\sigma_{NNLO}(13 \text{ TeV}) = 31.05^{+2.2\%}_{-5.0\%} \text{ fb}$

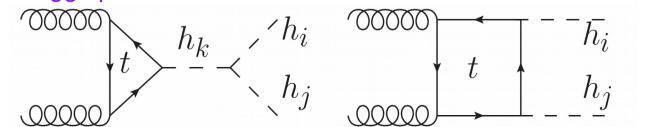

Borowka et al., PRL 117 (2016) 012001 JHEP 1610 (2016) 107; Grazzini, et al, JHEP 1805 (2018) 059; Julien Baglio's talk yesterday; Mazzitelli talk on Tuesday 0


BSM in Double Higgs

Couplings different from the SM and/or EFT



• New physics in the loop.



• New resonances.

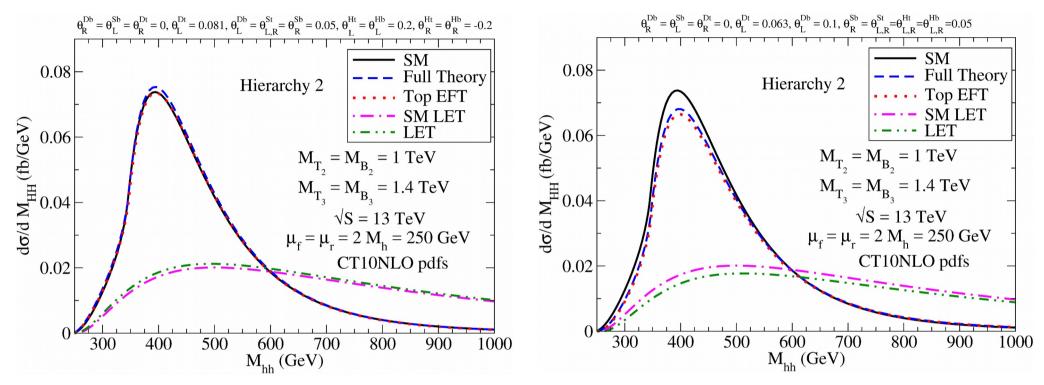
• Double exotic Higgs production.

Sept. 6, 2018

New Physics in the Loop

- Any colored particles that enter the loops can effect single and double Higgs production.
- Potentially have two contributions to EFT:

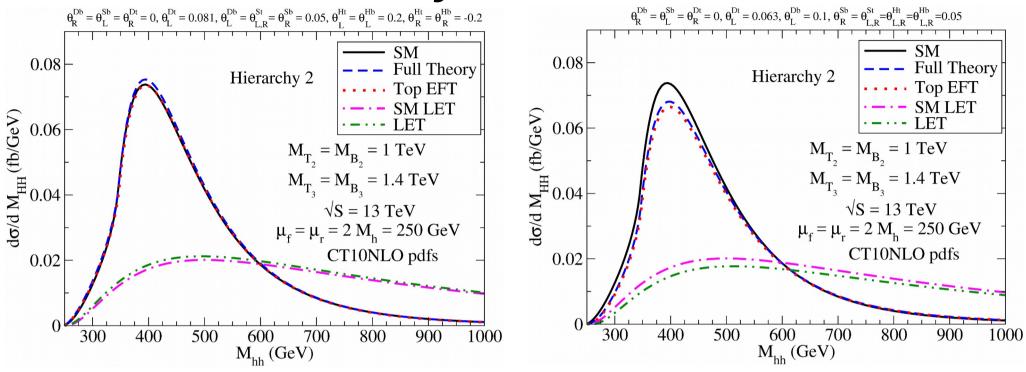
$$\mathcal{L}_{EFT} = c_1 \frac{\Phi^{\dagger} \Phi}{v^2} G^a_{\mu\nu} G^{a,\mu\nu} + c_2 \log\left(\frac{\Phi^{\dagger} \Phi}{v^2}\right) G^a_{\mu\nu} G^{a,\mu\nu}$$


- c_2 operator appears if particles get all their mass from the Higgs.
- Single and double Higgs coefficients linearly independent:

$$\mathcal{L}_{EFT} = 2(c_1 + c_2)\frac{h}{v}G^a_{\mu\nu}G^{a,\mu\nu} + (c_1 - c_2)\frac{h^2}{v^2}G^a_{\mu\nu}G^{a,\mu\nu}$$

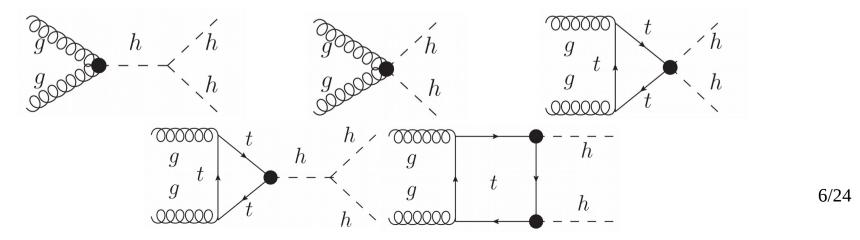
Pierce, Thaler, Wang JHEP 0705 (2007) 070

- In principle, single and double Higgs can contain different information.
 - Learned early on that there does not appear like new physics interacts strongly with the Higgs.


New Fermions in the Loop

Dawson, Furlan, IL PRD87 (2013) 014007; Chen, Dawson, IL PRD90 (2014) 035016

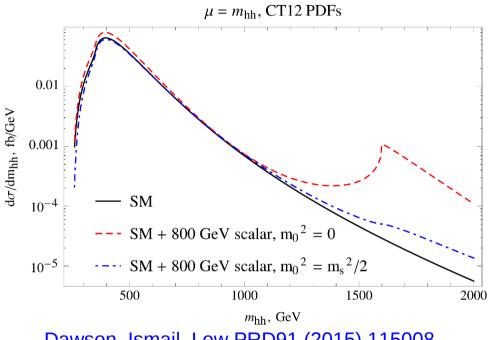
- Assume full vector-like quark generation:
 - SU(2) Doublet: $Q = (T, B)^{\mathrm{t}}$
 - Two SU(2) Singlets: U, D
- Two up-type and two down-type heavy quarks: T_2 , T_3 , B_2 , B_3


Validity of the EFT

Dawson, Furlan, IL PRD87 (2013) 014007; Chen, Dawson, IL PRD90 (2014) 035016

• Top EFT: Integrating out new heavy quarks creating new vertices:

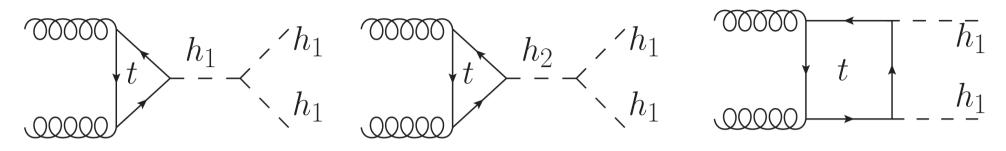
Sept. 6, 2018



Thresholds in the Loops $p p \rightarrow h h, \sqrt{S} = 13 \text{ TeV}$

- Very heavy new particles:
 - If most of the mass from the Higgs, has to be strongly coupled.
 - If weakly coupled most mass from another source.
 - EFT gluon couplings from one source :

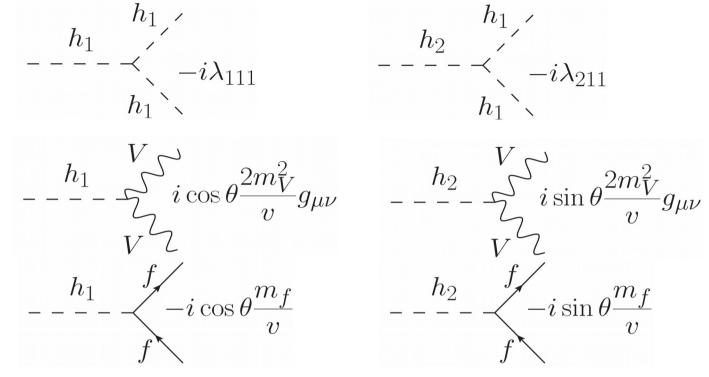
$$\mathcal{L}_{EFT} = c_1 \frac{\Phi^{\dagger} \Phi}{v^2} G^a_{\mu\nu} G^{a,\mu\nu}$$


- Single and double Higgs rate highly correlated.

Dawson, Ismail, Low PRD91 (2015) 115008

- Probe high enough invariant masses can see thresholds.
 - Does not depend explicitly on decay of new particles since they appear inside a loop.
 - Can fine tune light colored particles to be hard to see and still significantly enhance double Higgs rates. Batell, McCullough, Stolarski, Verhaaren JHEP 1509 (2015) 216; Kribs, Martin PRD86 (2012) 095023
- More complete models will often include alterations in Higgs couplings as well as new particles in the loop. Huang, Joglekar, Li, Wagner PRD97 (2018) 075001

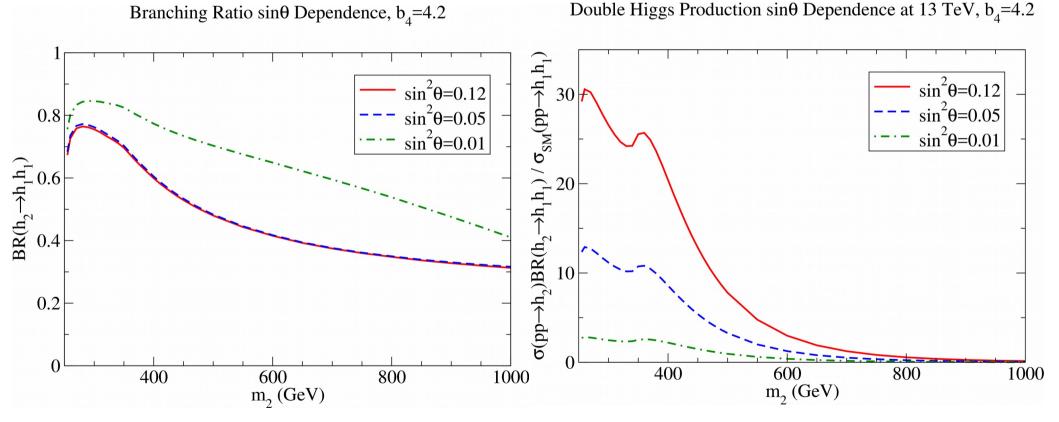
Resonant Production



- Focus on the simplest possibility for a scalar resonance, the addition of a real singlet scalar:
 - At the renormalizable level, only couples to the Higgs doublet:

$$V = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 + \frac{a_1}{2} \Phi^{\dagger} \Phi S + \frac{a_2}{2} \Phi^{\dagger} \Phi S^2 + \frac{b_1}{2} S^2 + \frac{b_3}{2} S^3 + \frac{b_4}{4} S^4$$

- Free parameters:
 - Two masses: $m_2 > 2m_1 = 2(125 \text{ GeV})$
 - Mixing angle: θ
 - Potential parameters: a_2, b_3, b_4


Couplings after Mixing With Higgs

- If kinematically available, resonant double Higgs production possible.
- Production of h₂ same as SM Higgs suppressed by $\sin^2 \theta$
- Decays of h2 similar to SM Higgs with new channel $h_2 \,{\rightarrow}\, h_1 \; h_1$
- Precision Higgs limits mixing of scalar singlet and Higgs boson.
 - Branching ratios unchanged.
 - Universal suppression of $\cos^2\theta~$ for production of h_{1}

Constraints on $pp \rightarrow h_2 \rightarrow h_1 h_1$ rates

- Cannot arbitrarily increase Higgs branching ratios.
 - More complicated scalar potential, more minima: 6 extrema in total
 - Singlet cannot contribute to fermion and vector boson masses.
 - Have to guarantee that global minimum has Higgs doublet vev is 246 GeV.

IL, M. Sullivan PRD96 (2017) 035037

BSM For HH Ian Lewis (Kansas)

Benchmark Points

m_2	a_2	b_3/v_{EW}	$\mathrm{BR}(h_2 \to h_1 h_2)$	$\sigma(pp \to h_2) \mathrm{BR}(h_2 \to h_1 h_1)$
$300 {\rm GeV}$	-0.79	-2.7	0.76	0.89 pb
$400 {\rm GeV}$	-0.40	-3.9	0.60	0.68 pb
$500 {\rm GeV}$	0.059	-5.4	0.48	0.26 pb
$600 {\rm GeV}$	0.56	-7.1	0.42	0.10 pb
$700 {\rm GeV}$	1.0	-8.7	0.37	0.042 pb
$800 {\rm GeV}$	1.6	-11	0.35	0.019 pb

m_2	a_2	b_3/v_{EW}	$BR(h_2 \to h_1 h_2)$	$\sigma(pp \to h_2) \mathrm{BR}(h_2 \to h_1 h_1)$
$300 {\rm GeV}$	-1.2	-1.6	0.76	$0.37 \ \mathrm{pb}$
$400 {\rm GeV}$	-1.0	-2.7	0.60	0.29 pb
$500 {\rm GeV}$	-0.78	-3.9	0.48	0.11 pb
$600 {\rm GeV}$	-0.59	-5.0	0.42	0.042 pb
$700 {\rm GeV}$	-0.31	-6.5	0.38	0.017 pb
$800 {\rm GeV}$	-0.015	-8.1	0.35	$0.0079 {\rm \ pb}$

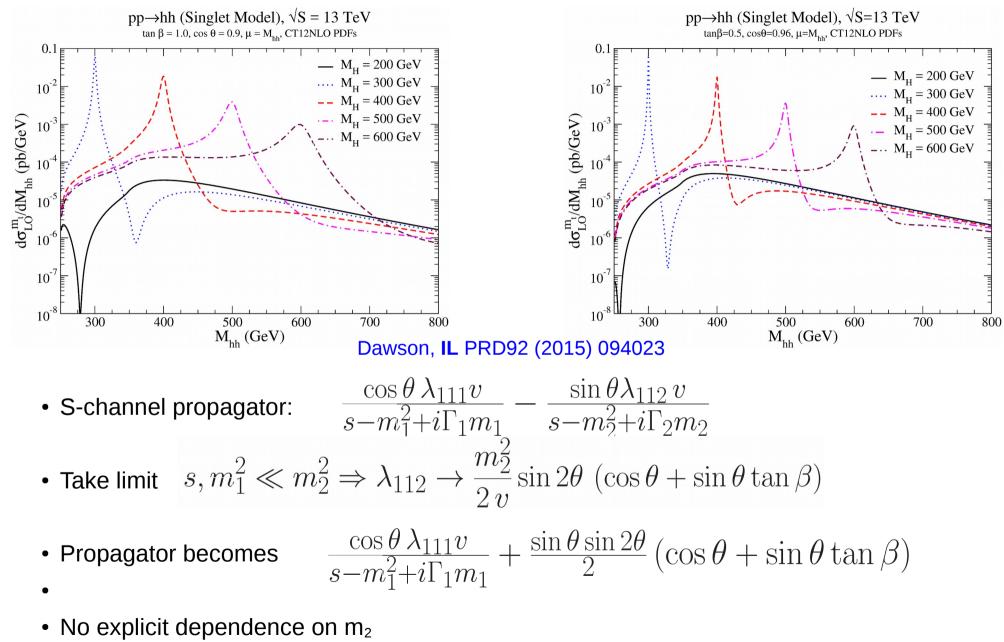
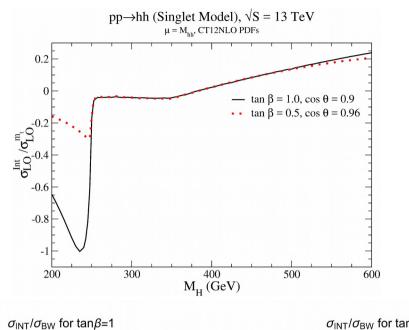

TABLE I: Benchmark points that maximize $BR(h_2 \rightarrow h_1h_1)$ with $b_4 = 4.2$ and $\sin^2 \theta = 0.12$. The cross sections are evaluated at a lab frame energy of $\sqrt{S_H} = 13$ TeV.

TABLE II: Benchmark points that maximize BR $(h_2 \rightarrow h_1 h_1)$ with $b_4 = 4.2$ and $\sin^2 \theta = 0.05$. The cross sections are evaluated at a lab frame energy of $\sqrt{S_H} = 13$ TeV.

IL, M. Sullivan PRD96 (2017) 035037

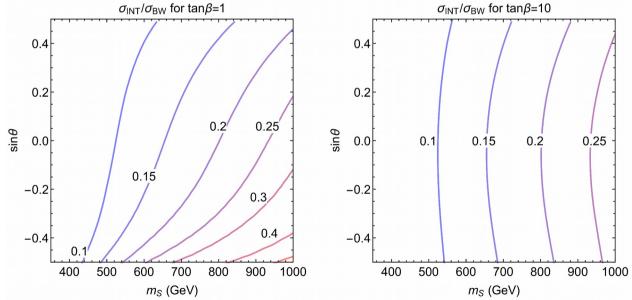
- Benchmark points for singlet model with Z_2 parity $S \rightarrow -S$ have also been developed. Robens, Stefaniak EPJ C76 (2016) 268
 - Not as many degrees of freedom, not as large a branching ratio $h_2 \rightarrow h_1 h_1$
 - We calculated NLO corrections for Robens, Stefaniak benchmark points for Yellow Report 4. Dawson, IL PRD91 (2015) 074012

Importance of Interference

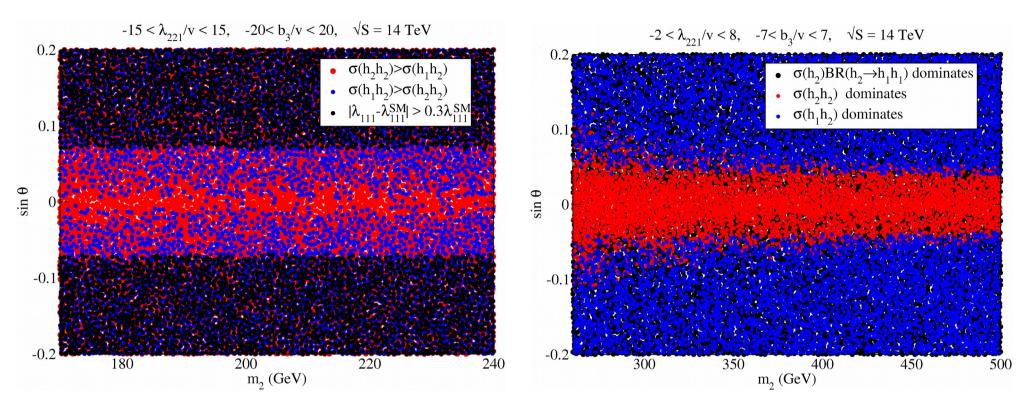


Sept. 6, 2018

BSM For HH Ian Lewis (Kansas)


Importance of Interference

- Off-shell interference:
 - Higher mass resonance, more important
 - Dawson, IL PRD92 (2015) 094023

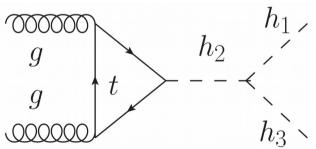

- On-shell interference:
 - Need phase between loops and imaginary part of propagator.

Carena, Liu, Riembau PRD 97 (2018) 095032

BSM For HH Ian Lewis (Kansas)

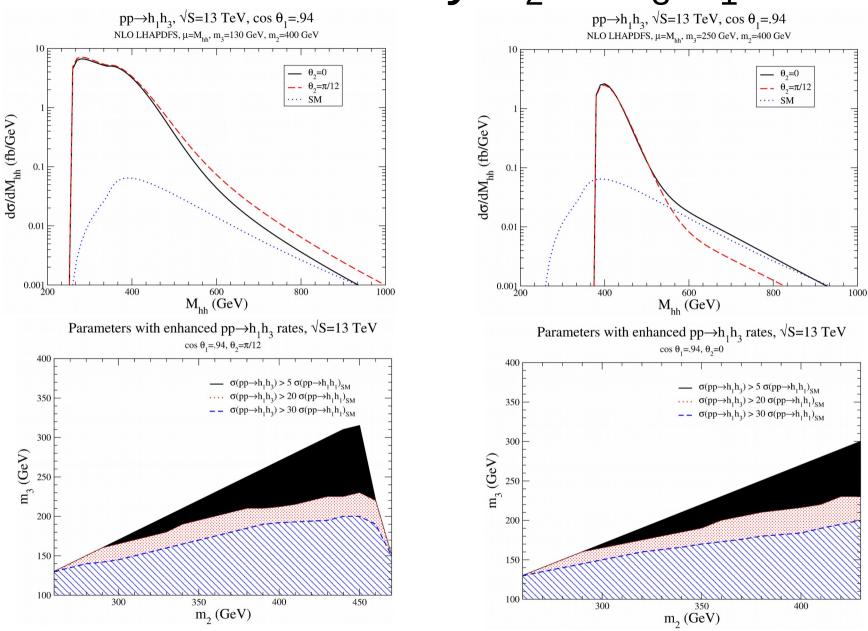
Additional Non-Resonant Modes

Chen, Kozaczuk, IL JHEP 1708 (2017) 096


- New final states h_1h_2 and h_2h_2
- Different production modes dominate in different regions.

Complex Singlet Model

- Consider a complex singlet: $S_c = S_1 + i S_2$
 - At renormalizable level only appears in Higgs potential
 - Three real scalars: h, S_1, S_2
 - Hence three physical scalar bosons exist in this model:


h_1, h_2, h_3

- h_1 the observed 125 GeV Higgs.
- All CP even, mix with the Higgs, and inherent Higgs like couplings to SM fermions and gauge boson.
- Possible to have $h_2 \rightarrow h_1 h_3$ resonant production.

– In fact, in the limit that h_3 does not mix, this is the only way to produce h_3 . Dawson, Sullivan PRD97 (2018) 015022

Exotic decay $h_2 \rightarrow h_3 h_1$

Dawson, Sullivan PRD97 (2018) 015022

What good is the real singlet model?


- Simplest extension of standard model.
- Changes just the scalar potential.
- Can help provide a strong first order electroweak phase transition.
- Can provide an interesting and simple benchmark model.

Resonant Double Higgs Production

• Much focus on relationship between resonant double Higgs production and a strong electroweak phase transition in the singlet model

Huang, et. Al PRD96 (2017) 035007; Profumo et al PRD91 (2015) 035018; Alves, Ghosh, Guo, Sinha 1808.08974; etc.

Carena, Liu, Riembau PRD 97 (2018) 095032

• Including interference effects important for determining viable parameter regions for strong first order electroweak phase transition.

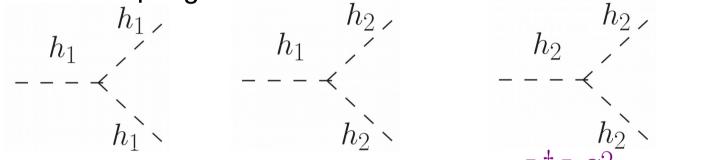
Importance of $pp \rightarrow h_2h_2 + X$

• Couplings between scalar and Higgs:

$$V_{\Phi,S} = \frac{a_1}{2} \Phi^{\dagger} \Phi S + \frac{a_2}{2} \Phi^{\dagger} \Phi S^2$$

- After symmetry breaking $\Phi = (0, (h+v)/\sqrt{2})^t$
 - Source of Higgs-scalar mixing is (assuming $\langle S \rangle = 0$)

$$V_{\Phi,S} \supset \frac{a_1 \, v}{2} hS$$

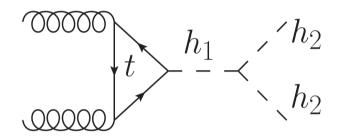

– In the limit of zero mixing, $a_1 \rightarrow 0$ and only a_2 survives: $V_{\Phi,S} \rightarrow \frac{a_2}{2} \Phi^{\dagger} \Phi S^2$

Importance of $pp \rightarrow h_2h_2+X$

• Small mixing limit

$$V \to -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 + \frac{a_2}{2} \Phi^{\dagger} \Phi S^2 + b_1 S + \frac{b}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4$$

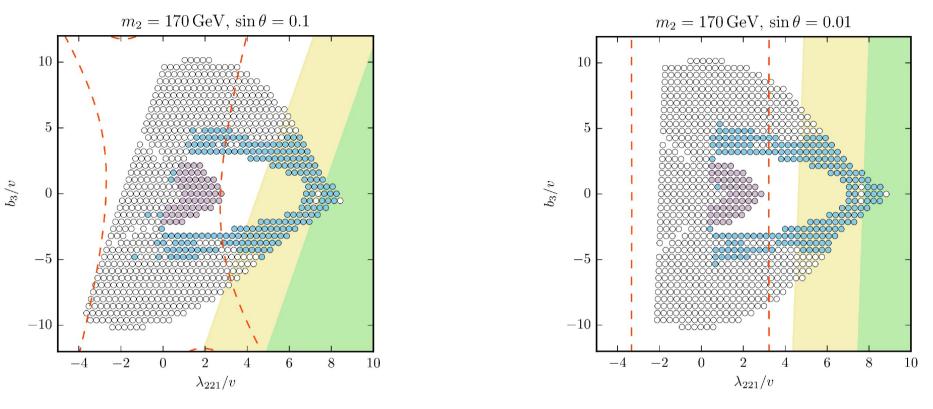
• Surviving trilinear couplings.


- Electroweak phase transition places lower limit on $\Phi^\dagger \Phi S^2$ and h_1-h_2-h_2 coupling
 - $\Phi^{\dagger}\Phi S^2$ is only surviving coupling between singlet and Higgs, so has to drive the strong first order phase transition.
 - h_1 - h_2 - h_2 coupling arises from a_2

Importance of $pp \rightarrow h_2h_2+X$

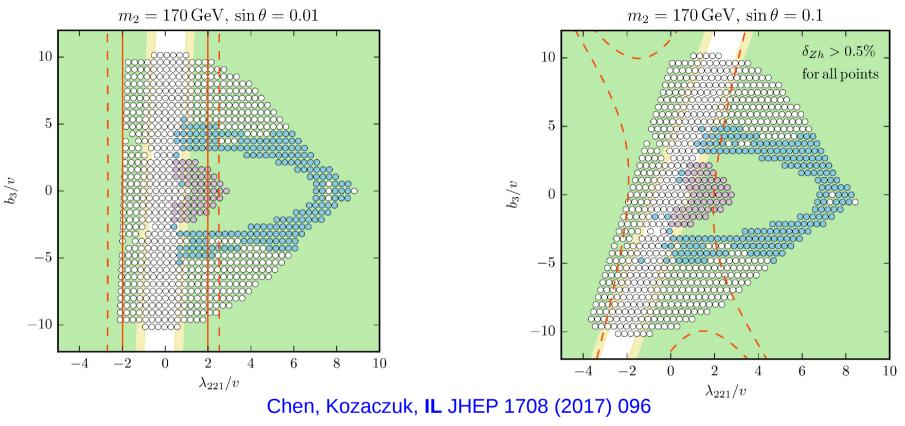
• Small mixing limit

$$V \rightarrow -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 + \frac{a_2}{2} \Phi^{\dagger} \Phi S^2 + b_1 S + \frac{b}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4$$


• Example of surviving new physics production (also have VBF):

- Exactly zero mixing, h_2 is stable Curtin, Meade, Yu JHEP 1411 (2014) 127
 - Search for jets+MET, trilinear Higgs deviations, Z-h deviation
- Small but non-zero mixing in mass range $2m_W < m_2 < 2m_1$
 - $h_2 \rightarrow h_1 h_1$ forbidden, $h_2 \rightarrow WW$ dominant decay mode
 - Search for the signal $pp \to h_2 h_2 \to 4W \to 2j2\ell^{\pm}\ell'^{\mp} 3\nu$

Chen, Kozaczuk, IL JHEP 1708 (2017) 096


HL-LHC

Chen, Kozaczuk, IL JHEP 1708 (2017) 096 $\sigma_{h_2h_2} \gtrsim 53 \, {\rm fb} \quad (2\sigma), \quad 147 \, {\rm fb} \quad (5\sigma)$

- Colored Dots: Compatible with strong first order electroweak phase transition.
- Yellow: Exclusion, Green: Discovery
- Red dashed curves: Higgs trilinear limits at 30%.

100 TeV

 $m_2 = 170 \,\text{GeV}: \ \sigma_{h_2 h_2} \gtrsim 56 \,\text{fb} \ (2\sigma), \ 142 \,\text{fb} \ (5\sigma)$

 $m_2 = 240 \,\text{GeV}: \ \sigma_{h_2 h_2} \gtrsim 202 \,\text{fb} \ (2\sigma), \ 519 \,\text{fb} \ (5\sigma)$

- 30 ab⁻¹ at 100 TeV
- Colored Dots: Compatible with strong first order electroweak phase transition.
- Yellow: Exclusion, Green: Discovery
- Red dashed curves: Higgs trilinear to 15%. Solid lines: Z-h limits to 0.5%

Sept. 6, 2018

BSM For HH Ian Lewis (Kansas)

Conclusions

- Many possibilities for new physics in double Higgs production.
 - Higgs couplings can be altered.
 - New colored particles can run in the loops.
 - Can have resonant production.
- Difficult to change rates much with new physics in the loops.
 - Light colored particles strongly constrained.
 - Still possible with some fine-tuning.
 - Loops do not explicitly depend on how internal particles' decays.
- Resonant production has spectacular signal.
 - In singlet model, double Higgs can be dominant decay mode of new heavy scalar.
 - Interference effects between SM-like triangle and box diagrams, and resonance can be significant.
 - With new scalars, new double scalar modes open up and can be important.
 - Searches for new scalar production can be important to probe new regions compatible with a strong first order electroweak phase transition.

Thank You